@
SWITCH

INGREDTENTS

LED

220 OHM RESISTOR

ABLl b

10 KILOHM RESISTOR

SPACESHIP

INTERFACE

YOUR ARDUINO IS GOING TO STAR IN A SCIENCE
FICTEON MOVIE

Now that you've got the basics of electricity under control, it’s time to move onto
controlling things with your Arduino. In this project, you'll be building something

that could have been a spaceship interface in a 1970s science fiction movie. You'll
make a cool control panel with a switch and lights that turn on when you press the
switch. You can decide whether the lights mean “Engage Hyperdrive” or “Fire the
lasers!”. A green LED will be on, until you press a button. When the Arduino gets
a signal from the button, the green light will turn off and 2 other lights will start
blinking.

The Arduino’s digital pins can read only two states: when there is voltage on an
input pin, and when there’s not. This kind of input is normally called digital (or
sometimes binary, for two-states). These states are commonly referred to as
HIGH and LOW. HIGH is the same as saying “there’s voltage here!” and LOW means
“there’s no voltage on this pin!”. When you turn an OUTPUT pin HIGH using a
command called digitalWrite(), you're turning it on. Measure the voltage
between the pin and ground, you'll get 5 volts. When you turn an OUTPUT pin
LOW, you're turning it off.

The Arduino’s digital pins can act as both inputs and outputs. In your code, you'll
configure them depending on what you want their function to be. When the pins
are outputs, you can turn on components like LEDs. If you configure the pins as
inputs, you can check if a switch is being pressed or not. Since pins O and 1are used
for communicating with the computer, it's best to start with pin 2.

34 Project 02 :)) . | 35

Spaceship Interface

D THE
2;’%:':'”11. 0 Wire up your breadboard to the Arduino’s 5V and ground

connections, just like the previous project. Place the two red
LEDs and one green LED on the breadboard. Attach the cathode
(short leg) of each LED to ground through a 220-ohm resistor.
Connect the anode (long leg) of the green LED to pin 3. .Connect
the red LEDs' anodes to pins 4 and 5, respectively.

s
Essws

@ Place the switch on the breadboard just as you did in the previous
project. Attach one side to power, and the other side to digital
pin 2 on the Arduino. You'll also need to add a 10k-ohm resistor
from ground to the switch pin that connects to the Arduino.

That pull-down resistor connects the pin to ground'when the

switch is open, so it reads LOW when there is no voltage coming
in through the switch.

DIGITAL
(PHM~)

ARALOG IN

You can cover the breadboard with the template provided in the kit. Or you can deco-
. rate it to make your own launch system. The lights turning on and off mean noth-
@7 ing by themselves, but when you put them in a contrpl panel and give them labels,
é - they gain meaning. What do you want the green LED to mean? What do the flash-
" ing red LEDs mean? You decide! -

+EmEEE BEmEEm

Fig. 1

5V
ARDUINO

PUSH
BUTTON

Place the folded paper over the-breadboard. The three LEDs

- andpushbuttonwill help keep tin place.
T AR TS I S e

i€ Project O2

THE CODE

Some notes before you start

Let's start coding

Configure pin functionality

Create the loop function

Every Arduino program has two main functions. Functions are
parts of a computer program that run specific commands. Func-
tions have unique names, and are “called” when needed. The
necessary functions in an Arduino program are called setup ()

and 1oop(). These functions need to be declared, which means
that you need to tell the Arduino what these functions will do.
setup() and loop() are declared as you see on the right.

In this program, you're going to creage a variable before you get
into the main part of the program. Variables are names you give
to places in the Arduino’s memory so you can keep track of what
is happening. These values can change depending on your pro-
gram's instructions.

Variable names should be descriptive of whatever value they are
storing. For example, a variable named switchState tells you
what it stores: the state of a switch. On the other hand, a vari-
able named “x” doesn't tell you much about what it stores.

To create a variable, you need to declare what type it is. The
data type int will hold a whole number (also called an integer);
that's any number without a decimal point. When you declare a
variable, you usually give it an initial value as well. The declaration
of the variable as every statement must end with a semicolon (;).

The setup() runs once, when the Arduino is first powered on.
This is where you configure the digital pins to be either inputs
or outputs using a function named pinMode(). The pins
connected to LEDs will be OUTPUTSs and the switch pin will be
an INPUT.

The loop() runs continuously after the setup() has
completed. The loop() is where you'll check for voltage on the
inputs, and turn outputs on and off. To check the voltage level
on a digital input, you use the function digitalRead() that
checks the chosen pin for voltage. To know what pin to check,
digitalRead() expects an argument.

Arguments are information that you pass to functions,
telling them how they should do their job For example,
digitalRead() needs one argument what filf {6 check, In
your program, digitalReacd () (s goiig (o cHBek Eie Stite of

I I L —

o Of

PO

switchState = O;

tup(){

i (3,0UTPUT) ;
| pinMode(4,0UTPUT);
§ pinMode(5,0UTPUT);
i pinMode(2,INPUT);

B void loop()({
v switchState = digit:

i // this is a comment

Read(2);

87

{ Cuxly bzxackets }'

Case sensitivity
y attentior necase
sensitivityi
i pinModei

Comments

Project 02

The if statement

Build up your spaceship

If you run your program now,

the lights will change when you
press the switch. That's pretty
neat, but you can add a little more
complexity to the program for a

more interesting output.

Now your program will flash the
red LEDs when the switch button

is pressed.

pin 2 and store the value in the switchState variable.

If there's voltage on the pin when digitalRead() is called, the
switchState variable will get the value HIGH (or 1). If there is
no voltage on the pin, switchState will get the value LOW (or 0).

Above, you used the word if to check the state of something
(namely, the switch position). An if() statement in
programming compares two things, and determines whether

the comparison is true or false. Then it performs actions you tell

it to do. When comparing two things in programming, you use
two equal signs ==. If you use only one sign, you will be setting a
value instead of comparing it.

digitalWrite() isthe command that allows you to send 5V
or OV to an output pin. digitalWrite() takes two arguments:
what pin to control, and what value to set that pin HLGH or LOW.
If you want to turn the red LEDs on and the green LED off inside
your 1£() statement, your code would look like this .

You've told the Arduino what to do when the switch is open.
Now define what happens when the switch is closed. The 1£()
statement has an optional else component that allows for
something to happen if the original condition is not met. In this
case, since you checked to see if the switch was LOW, write code
for the HIGH condition after the else statement.

To get the red LEDs to blink when the button is pressed, you'll
need to turn the lights off and on in the else statement you just
wrote. To do this, change the code to look like this.

After setting the LEDs to a certain state, you'll want the Arduino
to pause for a moment before changing thern back. If you don't
wait, the lights will go back and forth so fast that it will appear
as if they are just a little dim, not on and off. This is because
the Arduino goes through its loop () thousands of times each
second, and the LED will be turned on and off quicker than we
can perceive. The delay () function lets you stop the Arduino
from executing anything for a period of time. delay () takes an
argument that determines the number of milliseconds before it
executes the next set of code. There are 1000 milliseconds in one

second. delay (250) will pause for a (uarter secuid

11
]

if (switchState == LOW) {

// the button is not pressed g J

te(3, HIGH); // green LED
2(4, LOW); // xred LED
te(S, LOW); // xed LED

d

else { // the button is pressed
(3, LOW);
2(4, LOwW);
e(5, HIGH);

delay(250); // wait for a quarter second
// toggle the LEDs

digitalWrite(4, HIGH);

digitalwxite(5, LOW);

delay(250); // wait for a quaxrter second

}

) // go back to the beginning of the loop

40

Py

Project 02

Spaceship Interface

Once your Arduino is programmed, you should see the green
light turn on. When you press the switch, the red lights will start
flashing, and the green light will turn off. Try changing the time of
the two delay () functions; notice what happens to the lights
and how the response of the system changes depending on the
speed of the flashing. When you call a delay () in your program,
it stops all other functionality. No sensor readings will happen until
that time period has passed. While delays are often useful, when
designing your own projects make sure they are not unnecessarily
interfering with your interface.

How would you get the red LEDs to be blinking whén your program starts?
How could you make a larger, or more complex interface for your interstellar ad-
ventures with LEDs and switches?

| When you start creating an interface for your project, think about what people’s

expectations are while using it. When they press a button, will they want immedi-
ate feedback? Should there be a delay between their action and what the Arduino
does? Try and place yourself in the shoes of a different user while you design, and
see if your expectations match up to the reality of your project.

In this project, you created your first Arduino program
to control the behavior of some LEDs based on a switch.
You've used variables, an if()...else statement, and functions .
to read the state of an input and control outputs.

HOW TO READ
RESISTOR
COLOR CODES

4 BAND

1* DIGIT

0

1

2

Resistor values are marked using colored bands, according to a code developed in the 1920s,
when: it was too difficult to write numbers on such tiny objects.

Each color corresponds to a number, like you see in the table below. Each resistor has either
4or 5 bands. In the 4-band type, the first two bands indicate the first two digits of the value
while the third one indicates the number of zeroes that follow (technically it reprents the
power of ten). The last band specifies the tolerance: in the example below, gold indicates

that the resistor value can be 10k ohm plus or minus 5%.

1 0 x:10? + 5 = 10,0000 = 10kQ £5%

2% DIGIT 3% DIGIT MULTIPLIER TOLERANCE

0 0

1 1

2 2

5 5 .
6 6

7 7

5 BAND 1 1] 0 x102+ 5 = 10,0000 = 10kQ 5%
"RESISTORS INCLUDED _]lmfm .,,,.,\g‘“‘l_bm,v o § g 5 BAND
IN THE STARTER KIT a 5
T - T - 4 BAND
Youll find either a4 band or 2200 5600 4.7k
45 band version
1T {1 TTER 1111 o | | e 5 BAND
AN L TFNY QLY JE !

10k IMO) 1OMO

