NAME						linear	M	otion	6vaph
PERIOD		C	ATE	-		00000	·	1,15	``
1. The position of a wind-up toy is shown over se	l: A	Not I sec	i <mark>on G</mark> ra onds.	iphs d	& Cald	culations 🖋		V/J >	
a. 24 Estimate the initial position the b.				10					
Calculate the average velocity of motion shown. $y = b + m \times 7 \times$	of the	e toy	for the	ositoin, cm					
Write a position equation for the toy's motion									
d. 13 LM If the toy were to continue more where would it be at 20.0 seconds?	ving	in th	is way,			2 3 4	5	6 7 8	9 10
2. A cart rolls down the ramp. Its initial position	ı is O	.55 r	n and its in	nitial ve	clocity i	s 0.20 m/s. It acce	time, see elerates a	at a rate of 2.	4 m/s^2 .
a. XF20,55Wt0,20WIS(t) Write the po	F V _I	せゃ n eqt しこ	YZA + = lation for t	he cart'	s motio	n using these valu	es.		
b. O(8)2 Calculate its position at 0.40 s		id.)		•				
MARKANIAN CHAMMANAMAN VEZVITUL	st	6				**			
c. 7.4m/8 Calculate its velocity at 3.0 se	cond	is.							
d. Sketch a position-time, velocity-time and an graphs (such as x_0 , v_0 and a)	n acc Md	elera up g	raph V	plot for	the cart	s's motion. Mark a	ny know	n values on t	he
graphs (such as 10, 10 and a)	FORME	asi	Yè		<u>-</u> t		t		
3. The position-time graph of a car is shown over a. Describe the type of motion that created this	er sev graph	veral 1.	seconds.						
2.060		25			•••••••••••••••••••••••••••••••••••••••				
b. DM What was the car's initial position? c. Yel positive sope Did the car have an initial velocity? How can you tell?		22					*		
		18							
	Position, m	14							
of the car over the first five seconds?		12 10 8							
e. 25MG Calculate the car's average velocity over the first five seconds.		6 4 2							
f0,4M/S Calculate the approximate instantaneous velocity of the car at 3.0 seconds 20-22 M		0				2 3 Time, se	ec.	4	5
A 5000								, ,	
Why doesn't the average velocity for the e							at 2.6 sec	conds?	
h. ~ 2.755 Estimate when the instantane	ous	velo	city is appr	roximat	ely zero				

- 4. The graph shows the velocity vs. time for a rolling ball Describe how the ball is moving
- b. 2 What is the ball's acceleration?
- What is the ball's initial velocity?
- 126 + MX > Y(26+(-2)&t 2V;+Q&t Write a general equation for the ball's velocity using the starting velocity and acceleration.

0=6+(-2)(6) 3 Sec Calculate the time when the ball will stop

- a. V20 X12310M Identify the values that are given. At 258C Xf 2 60M
- b. Describe the motion shown. Car moving toward the left + decelerating
- c. 260M Estimate the car's displacement.
- $\frac{-52\text{M/S}}{42 \text{ Calculate the average velocity of the car from 0 to 5 seconds.}}{42 \frac{\text{dV}}{\text{dt}}} = \frac{0 (-80 \text{ M/s})}{55} = -16 \text{ M/s}^2$

$$a = \frac{dv}{dt} = \frac{0 - (-som | i)}{55} = -16m|s^2$$

- _______Calculate the acceleration of the car.
- 6. A pumpkin is thrown directly upward with an initial velocity of 19.6 m/s.
- a. $\sqrt{12} [9.6m](5, x) = 0, 02^{-9.8} [dentify the known values for this situation. <math>(x, x_0, v, v_0, a, t)$
- 2.605 How much time will it take for the pumpkin to reach its maximum height? V600
- 19.6m How high will the pumpkin get? either use: VF= Vi= 204x Or Xf = Ki + Vit + Katz

V12-80m/s

