\qquad Period \qquad Date \qquad

Honors Physics WS2

Show given information, equations, algebra, substitution, and units for full credit. Pay attention to significant figures.

1) $\frac{\left[4.6 \times 10^{1}\right]\left[2.1 \times 10^{-4}\right]}{\left[1.64 \times 10^{34}\right]}=$ $\left[1.64 \times 10^{34}\right]$
2) $\left[27.3 \times 10^{-22}\right]\left[2.0 \times 10^{18}\right]=$
3) $\frac{\left[4.2 \times 10^{14}\right]\left[9.4 \times 10^{7}\right]}{\left[6.4 \times 10^{9}\right]}=$
4) $\frac{\left[1.7 \times 10^{9}\right]\left[3.9 \times 10^{7}\right]}{\left[1.40 \times 10^{-6}\right]}=$

Formulas: $v=\frac{\Delta x}{\Delta t} \quad a=\frac{\Delta v}{\Delta t} \quad x_{f}=x_{i}+v_{i} t=\frac{1}{2} a t^{2} \quad v_{f}^{2}-v_{i}^{2}=2 a \Delta x$
6) Light travels in a straight line at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is its acceleration? Why? 0
7) How much time would it take to drive 80 miles if you had an average speed of 50 miles per hour? $\mathbf{1 . 6}$ hours
8) A train travels at $60 \mathrm{mi} / \mathrm{hr}$ for 3.5 hrs . How far did it travel? $\mathbf{2 0 0}$ miles
10) A car accelerates from $3.27 \mathrm{~m} / \mathrm{s}$ to $15.55 \mathrm{~m} / \mathrm{s}$ in 4.0 seconds flat. What is its acceleration? $3.07 \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$
11) A bicycle is traveling $5 \mathrm{~m} / \mathrm{s}$ at the top of a hill. When it reaches the bottom 6 seconds later it has a speed of $25 \mathrm{~m} / \mathrm{s}$. What is the acceleration? $\mathbf{3 ~ m} / \mathbf{s}^{2}$
12) It takes a bicycle 5 seconds to increase its speed from $3 \mathrm{~m} / \mathrm{s}$ to $18 \mathrm{~m} / \mathrm{s}$. What is the average rate of acceleration? $\mathbf{3 ~ m} / \mathbf{s}^{2}$
\qquad Period \qquad Date \qquad
13) A car accelerates from a position of rest to $50 \mathrm{~m} / \mathrm{s}$ in 20 seconds. First determine the rate of acceleration, then calculate the speed of the car at the end of the first 6 seconds.
14) If acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what is the final velocity of a falling object when it hits the ground if it started at rest and took 5 seconds to fall? Use $\mathrm{x}=1 / 2 \mathrm{gt}^{2}$, where $\mathrm{g}=$ acceleration due to gravity, $\mathrm{t}=$ time falling.
15) Karl decelerates for 3.00 sec from $12.0 \mathrm{~m} / \mathrm{s}$ at a rate of $-2.0 \mathrm{~m} / \mathrm{s}$ each second. What is his final speed?
16) Mary is racing in her car at $35.0 \mathrm{~m} / \mathrm{s}$ when she sees a dog and must come to a stop in 12.0 m . What must be Mary's deceleration in order to save the dog?
17) Extension from our California Screamin' ride problem today - if the ride's acceleration is $6.2 \mathrm{~m} / \mathrm{s}^{2}$ at the beginning and goes from 0 to $89 \mathrm{~km} / \mathrm{hr}$, what is its final position if we say the initial position is 0 ?
18) Acceleration... (circle one)
a. is the rate of change of velocity
b. reflects a change in speed or a change in direction
c. is zero when an object is at constant velocity
d. all of the above
19) Explain how velocity can be positive when acceleration is negative.

