REVISITTNG VECTORS

-We've defined vectors as quantities that have a magnitude and a direction
-Displacement, velocity, and acceleration
-Represent by an arrow whose length represents magnitude and head represents direction
-If we arbitrarily say this vector is $20 \mathrm{~m} / \mathrm{s}$ to the right
-This vector is $60 \mathrm{~m} / \mathrm{s}$ to the right

ADDING VECTORS

-Resultant is the vector sum of two or more component vectors
-There are 2 ways to add vectors to get the resultant

PARALLELOGRAM METHOD

- 1) Draw vectors with tails touching
-2) Draw a parallelogram projection of the vector with dashed lines to form a rectangle
-3) Resultant is the diagonal from the point where the two tails touch to the opposite corner

HEAD-TO-TAIL METHOD

- l) Draw the first vector
-2) Connect the tail of the second to the head of the first
-3) Resultant is from the tail of the first to the head of the second

ORDER OF ADDITION DOESN"T MATTER!

HLSO WORISS IF YOU HAVE VECTORS POINTING IN THE SAME OR OPPOSITE DIRECTIONS, OR MORE THAN 2 VECTORS

$\xrightarrow{10}+\stackrel{-3}{\longleftrightarrow}$

$$
4 \uparrow+4 \uparrow=8 \uparrow
$$

Up/North
Positive y direction

LETYS GET 2D!

-A plane flying at 3600 m up is traveling at 150. m / s. Vin Diesel puts a car in reverse so it leaves the back of the plane traveling at a horizontal $-10 \mathrm{~m} / \mathrm{s}$. How far would the car travel horizontally before it hits the ground in the absence of air resistance?

RESOLUTION

-Any vector drawn can be resolved into vertical and horizontal components

RULES FOR RESOLVING VECTORS

-Decompose all vectors into x and y components
-Add the x components together to get x component of resultant

- Same for y
-To get magnitude and direction of resultant vector:
$-V=\sqrt{V_{x}^{2}+V_{y}^{2}}$

$$
\theta=\tan ^{-1}\left(\frac{V_{y}}{V_{x}}\right)
$$

"Scrat is looking for his acorn. He walks 70.0 ft North, then 20.0 ft west. Lastly, he walks 50.0 ft at 30.0 degrees N of E . What is his overall displacement?

-The horizontal and vertical components of a projectile are completely independent of each other

- Gravity does not affect the horizontal component of the velocity, so the horizontal velocity $\left(v_{x}\right)$ remains constant

-An object projected horizontally will reach the ground at the same time as an object dropped vertically

ON TARGET LAB

-Secure your track down with tape and keep one end tilted with books, binders, etc.
-Roll the ball from the top of the track and use your phones to time how long the ball is rolling on the horizontal part. Do not let the ball roll onto the floor! Average 12 times

- Measure the horizontal distance of your track and calculate the horizontal velocity
- Measure the vertical height of your table
- Calculate how long it will take for the ball to hit the ground, then calculate the horizontal distance based on the horizontal velocity you measured.
- Moment of truth! Place the cup at the horizontal distance you predicted, roll the ball, and see if you make it in the cup!
-If you make it, congratulations! If not, go back and check your calculations and try again.
-Introduction
- Define a problem (that is not a "yes/no" question)
- Write a hypothesis, and be able to take a stand and give a rationale
- Materials and Methods
- All materials given and procedure well organized
- Repeated trials
-Results
- Raw data given in a neatly drawn chart
- Draw position, velocity, and acceleration vs. time graphs while the ball is airborne, draw a curve for x and y on the same graph
- Sample calculations
- Conclusion
" "CER" - "Claim, Evidence, Reasoning"- claim for the results of the experiment, evidence to justify the experiment, tie back to a basic physical concept
- Explain uncertainty/error

