Velocity ($\mathrm{v}, \mathrm{m} / \mathrm{s}$)

Time (t, seconds)

Time (t, seconds)
5

Acceleration $\left(\mathrm{a}, \mathrm{m} / \mathrm{s}^{2}\right)$

Time (t , seconds)

Time (t , seconds)

Goals for Today

■ Quiz time!

- Kinematic equations
- Freefall

Lab Tomorrow!

■ Bring a straight edge and graph paper

Motion at constant acceleration

$$
\begin{aligned}
& v=\frac{\Delta x}{\Delta t} \\
& \boldsymbol{a}=\frac{\Delta v}{\Delta t}
\end{aligned}
$$

$$
\begin{gathered}
x_{f}=x_{i}+v \Delta t \\
v_{f}=v_{i}+a \Delta t
\end{gathered}
$$

Motion at constant acceleration

- With a little simple calculus, can find acceleration's contribution to a change in position...
- $x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
- Or $\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
- (For the full derivation check out http://physics.info/kinematics-calculus/)

But what if there's no time??

$v_{f}^{2}-v_{i}^{2}=2 a \Delta x$

Your 3 kinematic equations

$$
\begin{gathered}
v_{f}=v_{i}+a \Delta t \\
\Delta x=v: \Delta t+\frac{1}{a \Delta t^{2}} \quad\left(x_{f}=x_{i}+v \Delta t\right)
\end{gathered}
$$

Strategies for solving a kinematics problem (Giancoli pg. 29)

- Draw it out first
- Figure out your unknowns/what you are solving for
- Write down your knowns/givens
- Make sure everything is in the right units
- Find the equation that best fits your unknowns and knowns
- Solve!

Example \#1

- Kira decelerates for 3.00 seconds from 12.0 m / s at a rate of $-2.0 \mathrm{~m} / \mathrm{s}$ each second. What is her final speed?

$$
\begin{aligned}
& \quad v_{f}=v_{i}+a \Delta t \\
& \cdot v_{f}=12.0 \mathrm{~m} / \mathrm{s}-\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.00 \mathrm{~s}) \\
& \cdot v_{f}=6.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example \#2

- Just like out of a DMV video - Kay is driving on a residential street at $16 \mathrm{~m} / \mathrm{s}$ when she sees a ball roll into the road 12.0 m ahead and she knows a child is soon to follow. What must be her deceleration in order to stop before hitting the ball or the following child?
- $a=\frac{0-\left(\frac{16.0 m}{s}\right)^{2}}{2 * 12.0 m}$

$$
v_{f}^{2}-v_{i}^{2}=2 a \Delta x
$$

- $a=-51.0 \mathrm{~m} / \mathrm{s}^{2}$

Example \#3

- Minimum stopping distance is important in traffic design. The average human reaction time is 0.22 s , meaning there is a 0.22 s delay between when one decides to break and when he or she actually begins breaking. A typical car can decelerate at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ in good conditions. Knowing this, calculate the total stopping distance in meters for a vehicle that is traveling at $100 . \mathrm{km} / \mathrm{h}$.
- Ans. 71 m

Freefall

- All objects accelerate toward the Earth under the unforgivable force of gravity
-They pick up speed as they descend

Freefall - The History

- Up through the $16^{\text {th }}$ century, people believed the teachings of Aristotle...
- "A body which is ten times as heavy as another will move ten times as rapidly as the other."

Freefall - The History

- Then Galileo showed up, dropped some masses off the Leaning Tower of Pisa, and came to an interesting conclusion...

- Acceleration due to gravity affects all objects the same regardless of their mass!
- If you dropped an elephant and a mouse off the Tower of Pisa, they would gracefully land at the same time.
- Any observed differences are due to air resistance.
- While a feather may land after a bowling ball, this difference is due to air resistance.

Calculations with Freefall

- Kinematic equations stay the same, but now g replaces a, where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, but you have to change the sign because g points down.

$$
\Delta x=v_{i} t+\frac{1}{2} a t^{2} \Longrightarrow \Delta x=v_{i} t-\frac{1}{2} g t^{2}
$$

- Saruman is conducting physics experiments from atop the Tower of Orthanc.
- If he drops his seeing stone (a ball) from the peak of his 150-m-tall fortress, how far will the ball have fallen after $1.00 \mathrm{~s}, 2.00 \mathrm{~s}$, and 3.00 s ? (Neglect air resistance)
- Ans. 4.90 m
- 19.6 m
- 44.1 m

- Saruman now throws the ball upward at $3.00 \mathrm{~m} / \mathrm{s}$
- How high does the ball go?
- 0.459 m
- How long is the ball in the air before it comes back to his hand?
- 0.612 s
-What is the ball's velocity when it comes back to his hand?
- $-3.00 \mathrm{~m} / \mathrm{s}$

Hang time

- Estimate how long your favorite basketball player will be in the air if they can jump 1 m .

$$
\begin{gathered}
\Delta x=v_{i} t-\frac{1}{2} g t^{2} \quad v_{i}=0 \\
1 m=-\frac{1}{2} g t^{2}
\end{gathered}
$$

