

Time (t, seconds)

Goals for Today

Quiz time! Kinematic equations Freefall

Lab Tomorrow!

Bring a straight edge and graph paper

Motion at constant acceleration

$$v = \frac{\Delta x}{\Delta t}$$
$$a = \frac{\Delta v}{\Delta t}$$

$$x_f = x_i + v\Delta t$$

 $v_f = v_i + a\Delta t$

Motion at constant acceleration

• With a little simple calculus, can find acceleration's contribution to a change in position...

•
$$x_f = x_i + v_i \Delta t + \frac{1}{2} a \Delta t^2$$

• Or
$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 (For the full derivation check out http://physics.info/kinematics-calculus/)

But what if there's no time??

• $v_f^2 - v_i^2 = 2a\Delta x$

Your 3 kinematic equations

$$v_{f} = v_{i} + a\Delta t$$

$$\Delta x = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}$$

$$v_{f}^{2} - v_{i}^{2} = 2a\Delta x$$

$$(x_{f} = x_{i} + v\Delta t)$$

Strategies for solving a kinematics problem (Giancoli pg. 29)

- Draw it out first
- Figure out your **unknowns**/what you are solving for
- Write down your **knowns/givens**
- Make sure everything is in the right **units**
- Find the equation that best fits your unknowns and knowns
- Solve!

Example #1

 Kira decelerates for 3.00 seconds from 12.0 m/s at a rate of -2.0 m/s each second. What is her final speed?

$$v_f = v_i + a\Delta t$$

 $v_f = 12.0 \text{ m/s} - (2.0 \text{ m/s}^2)(3.00\text{s})$
 $v_f = 6.0 \text{ m/s}$

Example #2

 Just like out of a DMV video – Kay is driving on a residential street at 16 m/s when she sees a ball roll into the road 12.0m ahead and she knows a child is soon to follow. What must be her deceleration in order to stop before hitting the ball or the following child?

Example #3

- Minimum stopping distance is important in traffic design. The average human reaction time is 0.22 s, meaning there is a 0.22 s delay between when one decides to break and when he or she actually begins breaking. A typical car can decelerate at 6.0 m/s² in good conditions. Knowing this, calculate the total stopping distance in meters for a vehicle that is traveling at 100. km/h.
- Ans. 71 m

Freefall

- All objects accelerate toward the Earth under the unforgivable force of gravity
- They pick up speed as they descend

Freefall – The History

- Up through the 16th century, people believed the teachings of Aristotle...
 - "A body which is ten times as heavy as another will move ten times as rapidly as the other."

Freefall – The History

 Then Galileo showed up, dropped some masses off the Leaning Tower of Pisa, and came to an interesting conclusion...

Acceleration due to gravity affects all objects the same regardless of their mass!

- If you dropped an elephant and a mouse off the Tower of Pisa, they would gracefully land at the same time.
- Any observed differences are due to air resistance.
 - While a feather may land after a bowling ball, this difference is due to air resistance.

Calculations with Freefall

• Kinematic equations stay the same, but now g replaces a, where $g = 9.81 \text{m/s}^2$, but you have to change the sign because g points down.

$$\Delta x = v_i t + \frac{1}{2}at^2 \implies \Delta x = v_i t - \frac{1}{2}gt^2$$

- Saruman is conducting physics experiments from atop the Tower of Orthanc.
- If he drops his seeing stone (a ball) from the peak of his 150-m-tall fortress, how far will the ball have fallen after 1.00 s, 2.00 s, and 3.00 s? (Neglect air resistance)
- Ans. 4.90 m
- 19.6 m
- 44.1 m

- Saruman now throws the ball upward at 3.00 m/s
- How high does the ball go?
 - 0.459 m
- How long is the ball in the air before it comes back to his hand?
 - 0.612 s
- What is the ball's velocity when it comes back to his hand?
 -3.00 m/s

Hang time

 Estimate how long your favorite basketball player will be in the air if they can jump 1 m. $\Delta x = v_i t - \frac{1}{2}gt^2$ $v_i=0$ $1m = -\frac{1}{2}gt^2$

