

Goals for Today

- Introduce relativity
- Review acceleration
- Graph position, speed, and velocity
- "Text lol" activity

Relativity 101

- All motion is relative!
- This means when we describe motion, we are moving relative to something
- The train is leaving the station, or is the station leaving the train?

What does it even mean to be motionless?

- You might be "motionless" in your seat right now, but...
- The Earth rotates at $\mathbf{1 5 0 0} \mathbf{~ k m} / \mathbf{h r}$
-and revolves around the Sun at $107,000 \mathrm{~km} / \mathrm{hr}$
- ... which revolves around a the supermassive black hole at the center of the Milky Way Galaxy at $792,000 \mathrm{~km} / \mathrm{hr}$
- ...which is moving outward from Big Bang location at 2.1 million $\mathrm{km} / \mathrm{hr}$!
- Could the universe itself be moving?

Please please please do NOT try this...

- If you're sitting on an Amtrak train going $\sim 100 \mathrm{mph}$, and you throw a 10 mph slow-pitch softball to your classmate sitting a few rows up, how fast would the softball be going relative to the Earth?
- It's effectively going $\mathbf{1 1 0} \mathbf{m p h}$! $\begin{gathered}\text { How Aroldis Chapman Threw The Fastest Pitch } \\ \text { Ever }\end{gathered}$

It's all relative

- You would be very lost if I told you "Disneyland is 40 km away, meet me there" unless I specify it is 40 km away from where and in what direction.

Review from yesterday

- What is the difference between distance and displacement?
- What is a scalar? What is a vector?
- Fill in the blank: "Acceleration is a change in \qquad Or
\qquad

Review: Speed vs. Velocity

- Both refer to how fast something is moving
- Both measure the rate of change of position
- average speed $=\frac{\text { distance }}{\text { time }} \quad$ average velocity $=\frac{\text { displacement }}{\text { time }}$

$$
v=\frac{\Delta x}{\Delta t}
$$

Speed vs. velocity

- If Bob travels 50 m in 50 sec in one direction, his speed and velocity are both $1 \mathrm{~m} / \mathrm{s}$
- If Bob travels 25 m N and then goes 25 m E, his speed will still be $1 \mathrm{~m} / \mathrm{s}$, but what is his velocity?

Acceleration

- Going in a straight line at the same speed - constant velocity
- But if we change our speed or our direction then we have a changing velocity.
- Changing our speed or direction is Acceleration

Acceleration

- Rate of change of velocity
- How quickly velocity changes
$\cdot \boldsymbol{a}=\frac{\Delta \boldsymbol{v}}{\Delta \boldsymbol{t}} \quad \boldsymbol{a}=\left(v_{f}-v_{i}\right) /\left(t_{f}-t_{i}\right)$
- If acceleration is a change in velocity and velocity is defined by a speed and a direction, then acceleration is a change in either speed or direction

Example \#1

- The California Screamin' ride at California Adventure accelerates from 0 to $89 \mathrm{~km} / \mathrm{hr}$ in 4.0 seconds at launch. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?

$$
\text { - } A n s=6.2 \mathrm{~m} / \mathrm{s}^{2}
$$

Example \#2

- You're driving down the 2 Freeway at $26 \mathrm{~m} / \mathrm{s}$ when you see traffic up ahead, so you brake to $12 \mathrm{~m} / \mathrm{s}$ in 7.0 seconds. What is your acceleration?
- Ans $=-2.0 \mathrm{~m} / \mathrm{s}^{2}$
-What does the negative sign mean?

Representations

- We've done numerical \& conceptual problems related to distance/displacement, speed/velocity, and acceleration
- Let's graph!

Position vs. time graphs

- Draw a position vs. time graph for a car moving at a constant $5 \mathrm{~m} / \mathrm{s}$.

Velocity vs. time graphs
-What does the velocity vs. time graph look like for a car moving at a constant 5 m / s ?

Position vs. Time Graphs

time $\left.(\mathrm{t}, \mathrm{s})$| Position | |
| :---: | :---: |
| $(\mathrm{x}, \mathrm{m} / \mathrm{s})$ | | \right\rvert\,

- A cheetah runs to the right 2 meters in 2 seconds, then stops for one second, then runs 4 meters to the right in one second, then abruptly runs back to where it started in one second.
-What would this look like in graph form?
- What is the slope of the graph between $t=$ 0 and $\mathrm{t}=2 \mathrm{~s}$?

Velocity vs. time graphs

- What does the velocity vs. time graph look like in this example?
-What is the area under the v vs. t curve?
- Displacement!

Your turn!

| Position | |
| ---: | ---: | ---: |
| time $(\mathrm{t}, \mathrm{s})(\mathrm{x}, \mathrm{m})$ | |
| 0 | 0 |
| 1 | 5 |
| 2 | 15 |
| 3 | 15 |
| 4 | 25 |
| 5 | 30 |

- In pairs
- Draw a position vs. time graph for the table
- Between which two time points was speed the highest?
- Make up a story where this graph is feasible

Let's ask a question

- How far could your car go in the time it takes to text "lol"?

Let's do an experiment!

- In groups of 4, measure the amount of time it takes each person in the group to text "lol" and hit "send"
- Each person will text, and while you are texting, the other 3 group members will be timing the text with their stopwatches.
- Average the 3 times to get the time for "name 1 ", then average all four of you to get your "group average".
- Then tell me your group average

Other kinds of position and velocity vs. time graphs

Breaking problems into manageable sections

- A tortoise and a hare are in a road race to defend the honor of their breed. The tortoise crawls the entire 1000. m distance at a speed of $0.200 \mathrm{~m} / \mathrm{s}$ while the rabbit runs the first 200.0 m at $2.000 \mathrm{~m} / \mathrm{s}$. The rabbit then stops to take a nap for 1.300 hr and awakens to finish the last 800.0 m with an average speed of $3.000 \mathrm{~m} / \mathrm{s}$.
- Who wins the race and by how much time?
- Make a position vs. time graph for this situation.

Put your WS1 on your table, and

Talk to each other and figure out how you are seated!

IT'S NOT BY LAST NAME.

