2D OR 3D COLLISIONS

- Vector nature of momentum is important
- Each component of the momentum is conserved
- $\mathrm{P}_{1 \mathrm{x}}{ }^{+} \mathrm{P}_{2 \mathrm{x}}=\mathrm{P}_{1 \mathrm{x}}{ }^{\prime}+\mathrm{P}_{2 \mathrm{x}}$,
- $m_{1} v_{1}=m_{1} v_{1}{ }^{\prime} \cos \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \cos \theta_{2}{ }^{\prime}$
- $\mathrm{P}_{1 y}+\mathrm{P}_{2 y}=\mathrm{P}_{1 y}{ }^{\prime}+\mathrm{P}_{2 y}$,
- $0=m_{1} v^{\prime}{ }^{\prime} \sin \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \sin \theta_{2}{ }^{\prime}$

2D OR 3D COLLISIONS

- A billiard ball moving with speed $v_{1}=3.0 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction strikes an equal-mass ball initially at rest
- The balls move off at 45 degrees: m_{2} above and m_{1} below. What are the speeds of the two balls after the collision?
- Both $2.1 \mathrm{~m} / \mathrm{s}$

SYSTEMS

- Why would it be stupid to shoot a rifle with a loose arm instead of resting the butt of the rifle against your shoulder?
- Loose arm: system = arm + rifle, shoulder: system = whole body + rifle

- Inelastic collisions - KE is not conserved
- $\mathrm{KE}_{\mathrm{f}}<\mathrm{KE}_{\mathrm{i}}$
- Explosions are just inelastic collisions in reverse
- PE $\rightarrow \mathrm{KE}$

- If two objects stick together after the collision, it is perfectly inelastic
- I.e. Football tackle
- 2 balls of putty colliding Note: even though KE is not conserved, total energy is
 always conserved, as is total vector momentum
- $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime}$
- If they stick together, $\mathrm{v}_{\mathrm{l}}{ }^{\prime}=\mathrm{v}_{2}{ }^{\prime}$
- $m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v^{\prime}$

- A 155 kg football player running at $6.00 \mathrm{~m} / \mathrm{s}$ tackles his 103 kg opponent (initially at rest) in a perfectly inelastic collision.
- How fast do they move after they collide?
- $3.60 \mathrm{~m} / \mathrm{s}$

How much of the initial KE is transformed into thermal or other forms of energy?

- - 1.12 kJ
- 2 spheres, both with mass m and speed v, collide head-on. What are the velocities after the collision assuming the collision is a) perfectly elastic and b) perfectly inelastic?
- A) $v_{1}{ }^{\prime}=-v, v_{2}{ }^{\prime}=+v$
- B) $v^{\prime}=0$

A 15-g bullet strikes and becomes embedded in a 1.10 kg block of wood placed on a horizontal surface just in front of the gun. If the coefficient of kinetic friction between the block and the surface is 0.25 , and the impact drives the block a distance of 9.5 m before it comes to rest, what was the muzzle speed of the bullet?
$510 \mathrm{~m} / \mathrm{s}$

