Kinematic Equations

Angular	Linear
$\omega_{\rm f} = \omega_{\rm i} + \alpha \Delta t$	$v_{\rm f} = v_{\rm i} + a\Delta t$
$\Delta\theta = \omega_{\rm i}\Delta t + \frac{1}{2}\alpha\Delta t^2$	$\Delta x = v_{\rm i} \Delta t + \frac{1}{2} a \Delta t^2$
$\omega_{\rm f}{}^2 = \omega_{\rm i}{}^2 + 2\alpha\Delta\theta$	$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta x$

Note: remember! the kinematic equations only work for constant acceleration, whether angular or linear

- A bicycle slows down uniformly from a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine
- a) the angular velocity of the wheels at the initial instant
- b) the total number of revolutions each wheel rotates in coming to rest
- c) the angular acceleration of the wheel
- d) the time it took to come to a stop

- A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine
- a) the angular velocity of the wheels at the initial instant
- $\omega_0 = v_0/r$
- $\omega_0 = (8.40 \text{ m/s})/(0.340 \text{ m})$
- $\omega_0 = 24.7 \text{ rad/s}$

- A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a
 distance of 115 m. Each wheel and tire has an overall diameter of
 68.0 cm. Determine
- b) the total number of revolutions each wheel rotates in coming to rest
- Revs = d/C
- Revs = $d/(2\pi r)$
- Revs = $(115 \text{ m})/(2\pi \cdot 0.340 \text{ m})$
- Revs = 53.8 rev

- A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine
- c) the angular acceleration of the wheel
- $\alpha = (\omega_1^2 \omega_0^2)/(2\Delta\theta)$
- $\alpha = (0 (24.7 \text{ rad/s})^2)/(2 \cdot 2\pi \cdot 53.8 \text{ rev})$
- $\alpha = -0.902 \text{ rad/s}^2$

- A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine
- c) the time it took to come to a stop
- $t = (\omega_1 \omega_0)/\alpha$
- $t = (0 24.7 \text{ rad/s})/(-0.902 \text{ rad/s}^2)$
- t = 27.4 s