GRAVITY AND SPACE

Gravity

- Distortions of spacetime due to mass
- Mass doesn't weigh down spacetime, spacetime curves around a mass
- Attractive force

Force of Gravity between two objects

$$
F_{G}=\frac{G M_{1} m_{2}}{r^{2}}
$$

$\mathrm{G}=6.674 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Universal gravitation constant r is distance between the centers of the objects

Which exerts a greater force: m 1 on m 2 , or m 2 on m 1 ? (Hint: think
 of Newton's $3^{\text {rd }}$ Law)

Inverse square law

- The force of gravity is proportional to the inverse square of the distance
- If you double the distance, the force of gravity decreases by a factor of 4 .

An apple on a tree feels 1 N of force due to gravity. If you double the height of the tree, the force of gravity on the apple would be:
A. $2 x$ as strong
B. $1 / 2$ as strong
C. $1 / 4$ as strong
D. None of the above

An apple on a tree feels 1 N of force due to gravity. If you double the height of the tree, the force of gravity on the apple would be:
A. $2 x$ as strong
B. $1 / 2$ as strong
C. $1 / 4$ as strong
D. None of the above

Why?

Gravitational Potential Energy \rightarrow Escape speed

- $P E_{G}=\frac{-G M_{1} m_{2}}{r}$
- How fast would you need to throw a ball of mass m from the surface of Earth for it to escape Earth's gravity?
- $\mathrm{E}_{\text {tot }}=\mathrm{KE}+\mathrm{PE} \quad$ When m is no longer in Earth's gravity well, $\mathrm{E}_{\text {tot }}=0$
- $E_{\text {tot }}=\frac{1}{2} m v^{2}-\frac{G M_{E} m}{r}=0$
- $v_{\text {esc }}=\sqrt{\frac{2 G M_{E}}{R_{E}}}$ doesn't depend on the mass of the ball!

What is the escape speed of any object from the surface of Earth?

- $v_{\text {esc }}=\sqrt{\frac{2 G M}{R}}$
- Mass of the Earth $=5.98 \times 10^{24} \mathrm{~kg}$, radius of Earth $=6.38 \times 10^{6} \mathrm{~m}$
- 11,200 m/s
- Or 11.2 km/s

Which requires more fuel: a rocket going from Earth going to the Moon, or going from Moon to the Earth?

- Think escape velocity/which object has a larger gravity well

Orbiting speed

- If you threw an object horizontally at $8000 \mathrm{~m} / \mathrm{s}$, it would travel 8000 m horizontally and fall 5 m . It would never hit the ground and orbit the earth in a circular orbit
- What if you threw it at $9000 \mathrm{~m} / \mathrm{s}$? This is not quite fast enough to escape Earth's gravity well (escape speed $=11200 \mathrm{~m} / \mathrm{s}$)
- It would orbit in an ellipse!

"Weightlessness"

- Astronauts on ISS aren't really weightless
- It's also a common misconception that there is no gravity in space
- They experience about 90% of the force of gravity from the Earth as we do

- They are constantly falling around the Earth

Orbiting speed

- $F_{G}=F_{C}$
- $\frac{G M_{1} m_{2}}{r^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
the m in the centripetal force equation is the one that is orbiting the earth, which gets cancelled out
- $v_{o r b}=\sqrt{\frac{G M_{1}}{r}}$

Orbiting speed

- If an object is orbiting at height h from the surface of the Earth, what is its orbiting speed?
- $v_{o r b}=\sqrt{\frac{G M_{1}}{r}}$
- $r=R+h$

R = radius of the Earth/object being orbited around

Why does an object move faster when it is closer to the sun vs. farther away from the sun?

- Conservation of angular momentum L = Iw
- Component of force of gravity aligned with the velocity of the object

Kepler's 3 Laws

- Johannes Kepler (1571-1630)
- German mathematician, astrologer, astronomer
- 3 Laws of Planetary Motion
- 1) The orbit of a planet is an ellipse with the Sun at one of the two focus points 2) A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time 3) The square of the orbital period of a
 planet is proportional to the cube of its average distance from the Sun

Kepler's 3 Laws

1) The orbit of a planet is an ellipse with the Sun at one of the two focus points
2) A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time
3) The square of the orbital period of a
 planet is proportional to the cube of its average distance from the Sun

Kepler's $1^{\text {st }}$ Law

An elliptical orbit of a planet
(greatly exaggerated)

Kepler's $2^{\text {nd }}$ Law

Kepler's 3rd Law

$$
\begin{array}{lr}
v_{o r b}=v_{t} & T^{2}=r^{3} \\
\sqrt{\frac{G M_{1}}{r}}=\frac{2 \pi r}{T} & \begin{array}{c}
\text { If expressed in the following units: }
\end{array} \\
T^{2}=\frac{4 \pi^{2}}{G M} r^{3} & r \quad \begin{array}{c}
\text { Earth years } \\
(\mathrm{a}=1 \mathrm{AU} \text { for Earth })
\end{array} \\
\end{array}
$$

T is in seconds and r is in meters
r is the distance between the centers of the two objects, not the radius of the object!

