Goals for Today

- Introduce relativity
- Understand speed, velocity, and acceleration
- Text lol activity

Relativity 101

- All motion is relative!
- This means when we describe motion, we are moving relative to something
- The train is leaving the station, or is the station leaving the train?

What does it even mean to be motionless?

- You might be "motionless" in your seat right now, but...
- The Earth rotates at $\mathbf{1 5 0 0} \mathbf{~ k m} / \mathbf{h r}$
-and revolves around the Sun at $107,000 \mathrm{~km} / \mathrm{hr}$
- ... which revolves around a the supermassive black hole at the center of the Milky Way Galaxy at $792,000 \mathrm{~km} / \mathrm{hr}$
- ...which is moving outward from Big Bang location at 2.1 million $\mathrm{km} / \mathrm{hr}$!
- Could the universe itself be moving?

Please please please do NOT try this...

- If you're sitting on an Amtrak train going $\sim 100 \mathrm{mph}$, and you throw a 10 mph slow-pitch softball to your classmate sitting a few rows up, how fast would the softball be going relative to the Earth?
- It's effectively going $\mathbf{1 1 0} \mathbf{m p h}$! $\begin{gathered}\text { How Aroldis Chapman Threw The Fastest Pitch } \\ \text { Ever }\end{gathered}$

It's all relative

- You would be very lost if I told you "Disneyland is 40 km away, meet me there" unless I specify it is 40 km away from where
- And also, in what direction?

Review from yesterday

- What is the difference between distance and displacement?
-What is a scalar? What is a vector?
- Fill in the blank - "if we multiply numbers in scientific notation, we ___ the exponents, while if we divide numbers we \qquad the exponents."

Speed vs. velocity

- Both refer to how fast something is moving
- Both measure the rate of change of position
- Average speed
- Distance traveled divided by the time it takes to travel that distance.
- average speed $=\frac{\text { distance }}{\text { time }}$

Speed vs. velocity

- Velocity refers to both the magnitude of how fast an object is moving and the direction in which it is moving.
- Average velocity
- Displacement traveled divided by time
- average velocity $=\frac{\text { displacement }}{\text { time }}$

- In our example, say you completed your trek in 15 minutes (not including time stopped at your CSOC)
- What was your average speed in m / s ?
- $13 \mathrm{~m} / \mathrm{s}$
- What about your average velocity in m / s ?
- $\frac{4.1 \mathrm{~km}}{15 \mathrm{~min}}=0.27 \frac{\mathrm{~km}}{\mathrm{~min}} * \frac{1000 \mathrm{~m}}{\mathrm{~km}} * 1 \frac{\mathrm{~min}}{60 \mathrm{~s}}=4.5 \mathrm{~m} / \mathrm{s}$
- Why is the average velocity < average speed?

Your first kinematic equation
 $v=\frac{\Delta x}{\Delta t}$

Could also be written as
$v=\left(x_{f}-x_{i}\right) /\left(t_{f}-t_{i}\right)$

Example \#1

- It takes about 1 hr to fly from Los Angeles to San Francisco ($\sim 560 \mathrm{~km}$). What is the velocity of the plane in m / s ?
- Ans: 160 m/s

Example \#2

- Samus, from the video game series Metroid, is capable of traveling at supersonic speeds ($\sim 410 \mathrm{~m} / \mathrm{s}$). How long would it take her to travel from downtown San Francisco to downtown Los Angeles? ($\sim 560 \mathrm{~km}$)?
- 1.4×10^{3} seconds (this is $\sim 22 \mathrm{~min}$!)

Example \#3

- Samus, from the video game series Metroid, is capable of traveling at supersonic speeds ($\sim 410 \mathrm{~m} / \mathrm{s}$). How far could she travel in 1 day?
- $3.5 \times 10^{7} \mathrm{~m}$ - this is almost the circumference of the earth

Instantaneous vs. average velocity

- As you drive toward downtown LA, your car's speedometer reads 40 mph .
- If downtown LA is 10 miles away, how long will it take you to get there?
- What is the difference between that answer and how long it actually takes you to get there?
- It would probably take us much longer than 15 minutes...

Acceleration

- Going in a straight line at the same speed - constant velocity
- But if we change our speed or our direction then we have a changing velocity.
- Changing our speed or direction is Acceleration

Acceleration

- Rate of change of velocity
- How quickly velocity changes

$$
\boldsymbol{a}=\frac{\Delta \boldsymbol{v}}{\Delta \boldsymbol{t}} \quad \boldsymbol{a}=\left(v_{f}-v_{i}\right) /\left(t_{f}-t_{i}\right)
$$

Conceptual question - in partners
-Why is acceleration considered a change in either speed or direction instead of just a change in speed?

- Remember - velocity has both a magnitude and a direction!

Example \#1

- The California Screamin' ride at California Adventure accelerates from 0 to $89 \mathrm{~km} / \mathrm{hr}$ in 4.0 seconds at launch. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?

$$
\text { - } A n s=6.2 \mathrm{~m} / \mathrm{s}^{2}
$$

Example \#2

- You're driving down the 2 Freeway at $26 \mathrm{~m} / \mathrm{s}$ when you see traffic up ahead, so you brake to $12 \mathrm{~m} / \mathrm{s}$ in 7.0 seconds. What is your acceleration?
- Ans $=-2.0 \mathrm{~m} / \mathrm{s}^{2}$
-What does the negative sign mean?

Let's ask a question

- How far could your car go in the time it takes to text "lol"?

Let's do an experiment!

- In groups of 4, measure the amount of time it takes each person in the group to text "lol" and hit "send"
- Each person will text, and while you are texting, the other 3 group members will be timing the text with their stopwatches.
- Average the 3 times to get the time for "name 1 ", then average all four of you to get your "group average".

