REVISITTNG VECTORS

-We've defined vectors as quantities that have a magnitude and a direction
-Displacement, velocity, and acceleration
-Represent by an arrow whose length represents magnitude and head represents direction
-If we arbitrarily say this vector is $20 \mathrm{~m} / \mathrm{s}$ to the right
-This vector is $60 \mathrm{~m} / \mathrm{s}$ to the right

ADDING VECTORS

-Resultant is the vector sum of two or more component vectors
-There are 2 ways to add vectors to get the resultant

PARALLELOGRAM METHOD

- 1) Draw vectors with tails touching

PARHLLELLOGRAM METHOD

-2) Draw a parallelogram projection of the vector with dashed lines to form a rectangle

PARALLELOGRAM METHOD

-3) Resultant is the diagonal from the point where the two tails touch to the opposite corner

HEAD-TO-TAIL METHOD

- l) Draw the first vector
-2) Connect the tail of the second to the head of the first
-3) Resultant is from the tail of the first to the head of the second

ORDER OF ADDITION DOESN"T MATTER!

HLSO WORISS IF YOU HAVE VECTORS POINTING IN THE SAME OR OPPOSITE DIRECTIONS, OR MORE THAN 2 VECTORS

$\xrightarrow{10}+\stackrel{-3}{\longleftrightarrow}$

$$
4 \uparrow+4 \uparrow=8 \uparrow
$$

Up/North
Positive y direction

LETYS GET 2D!

-A train is moving east at $12.0 \mathrm{~m} / \mathrm{s}$. A child is on the floor of the train pushing a toy car north across the train at $2.6 \mathrm{~m} / \mathrm{s}$. What is the resulting magnitude and direction of the velocity of the toy car?
$-12.3 \mathrm{~m} / \mathrm{s}, 12.2$ degrees north of east

