REVISITING VECTORS

We've defined vectors as quantities that have a magnitude and a direction

Displacement, velocity, and acceleration

 Represent by an arrow whose length represents magnitude and head represents direction

 If we arbitrarily say this vector is 20 m/s to the right

This vector is 60 m/s to the right

ADDING VECTORS

- Resultant is the vector sum of two or more component vectors
- There are 2 ways to add vectors to get the resultant

PARALLELOGRAM METHOD

1) Draw vectors with tails touching

PARALLELOGRAM METHOD

 Draw a parallelogram projection of the vector with dashed lines to form a rectangle

PARALLELOGRAM METHOD

 3) Resultant is the diagonal from the point where the two tails touch to the opposite corner

HEAD-TO-TAIL METHOD

- 1) Draw the first vector
- 2) Connect the tail of the second to the head of the first
- 3) Resultant is from the tail of the first to the head of the second

ORDER OF ADDITION DOESN'T MATTER!

ALSO WORKS IF YOU HAVE VECTORS POINTING IN THE SAME OR OPPOSITE DIRECTIONS, OR MORE THAN 2 VECTORS

Up/North Positive y direction

LET'S GET 2D!

Left/West Negative x direction Right/East Positive x direction

Down/South Negative y direction

0

•A train is moving east at 12.0 m/s. A child is on the floor of the train pushing a toy car north across the train at 2.6 m/s. What is the resulting magnitude and direction of the velocity of the toy car?

12.3 m/s, 12.2 degrees north of east

