Storytelling by graph

Position	
time $(\mathrm{t}, \mathrm{s})(\mathrm{x}, \mathrm{m})$	
0	0
1	5
2	15
3	15
4	25
5	30

- Take out your Linear Graphs WS1
- In groups of 3

1. Draw a position vs. time graph for the table
2. Draw a velocity vs. time graph
3. Calculate the displacement from the velocity vs. time graph
4. Make up a story where this graph is feasible

5

Velocity (v, m/s)
(

Acceleration ($\mathrm{a}, \mathrm{m} / \mathrm{s}^{2}$)

Goals for today

- Discuss standard deviation
- Review for quiz tomorrow
- Go through our kinematics equations

Equations you will be given on the quiz

$$
v=\frac{\Delta x}{\Delta t} \quad a=\frac{\Delta v}{\Delta t}
$$

...And any conversions

Things I expect you to know
average speed $=\frac{\text { distance }}{\text { time }} \quad$ average velocity $=\frac{\text { displacement }}{\text { time }}$

- Answer some conceptual and numerical questions about scalar/vector, distance/displacement, speed/velocity, instantaneous vs. average velocity, and acceleration
- Make sure your units check out!

Conceptual question example

-Which of the following can be units for acceleration?

- m/s
- km/hr
- m/s ${ }^{2}$
- mph

Things I expect you to know pt. 2

- Describe the motion of an object given a position vs. time graph
- Given an object's motion, draw a position over time and a velocity over time graph

EVERYTHING FROM HERE ON OUT WILL NOT BE ON YOUR QUIZ

So no worries here.

Kinematics vs dynamics

- Kinematics studies the motion of objects
- Dynamics studies the forces that cause that motion

Motion at constant acceleration

- If acceleration is constant (which in many practical situations it is)...
- Can use this fact to derive some pretty convenient relationships between acceleration, velocity, and position with respect to time

Motion at constant acceleration

$$
\begin{aligned}
& v=\frac{\Delta x}{\Delta t} \\
& \boldsymbol{a}=\frac{\Delta v}{\Delta t}
\end{aligned}
$$

$$
\begin{gathered}
x_{f}=x_{i}+v \Delta t \\
v_{f}=v_{i}+a \Delta t
\end{gathered}
$$

Example \#1

- Kira decelerates for 3.00 seconds from 12.0 m / s at a rate of $-2.0 \mathrm{~m} / \mathrm{s}$ each second. What is her final speed?

$$
\begin{aligned}
& \quad v_{f}=v_{i}+a \Delta t \\
& \cdot v_{f}=12.0 \mathrm{~m} / \mathrm{s}-\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.00 \mathrm{~s}) \\
& \cdot v_{f}=6.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Motion at constant acceleration

- With a little simple calculus, can find acceleration's contribution to a change in position...
- $x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
- Or $\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
- (For the full derivation check out http://physics.info/kinematicscalculus/)
- Extension from our California Screamin' ride problem - if the ride's acceleration is $6.2 \mathrm{~m} / \mathrm{s}^{2}$ at the beginning and goes from 0 to $25 \mathrm{~m} / \mathrm{s}$ in 6.0 seconds, what is its final position if we say the initial position is 0 ? $\quad x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
- $\mathrm{X}_{\mathrm{f}}=(0 \mathrm{~m})+(0 \mathrm{~m} / \mathrm{s})(6 \mathrm{~s})+\frac{1}{2}\left(6.2 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~s})^{2}$
-110m
- Minimum stopping distance is important in traffic design. The average human reaction time is 0.22 s , meaning there is a 0.22 s delay between when one decides to break and when he or she actually begins breaking. A typical car can decelerate at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ in good conditions. Knowing this, calculate the total stopping distance in meters for a vehicle is traveling at $100 . \mathrm{km} / \mathrm{h}$.
-Ans. 71 m

But what if there's no time??

$v_{f}^{2}-v_{i}^{2}=2 a \Delta x$

- Just like out of a DMV video - Kay is driving on a residential street at $16 \mathrm{~m} / \mathrm{s}$ when she sees a ball roll into the road 12.0 m ahead and she knows a child is soon to follow. What must be her deceleration in order to stop before hitting the ball or the following child?
- $a=\frac{0-\left(\frac{16.0 m}{s}\right)^{2}}{2 * 12.0 m}$

$$
v_{f}^{2}-v_{i}^{2}=2 a \Delta x
$$

- $a=-51.0 \mathrm{~m} / \mathrm{s}^{2}$

Your 4 kinematic equations

$$
\begin{gathered}
v_{f}=v_{i}+a \Delta t \quad x_{f}=x_{i}+v \Delta t \\
\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
v_{f}^{2}-v_{i}^{2}=2 a \Delta x
\end{gathered}
$$

Strategies for solving a kinematics problem

- Draw it out first
- Figure out your unknowns/what you are solving for
- Write down your knowns/givens
- Make sure everything is in the right units
- Find the equation that best fits your unknowns and knowns
- Solve!

Practice may not make you perfect, but it certainly makes you better!

