LET'S DO AN EXPERIMENT!

In groups of 4, measure the amount of time it takes each person in the group to text "lol" and hit "send" "Each person will text, and while you are texting, the other 3 group members will be timing the text with their stopwatches.
"Average the 3 times to get the time for "name 1 ", then average all four of you to get your "group average".
"Then tell me your group average

THINK OF 1-2 EXAMPLES WHERE INSTANTANEOUS VELOCITY MIGHT BE ZERO BUT ACCELERATION IS NOT ZERO

Hint: Acceleration due to gravity is a thing!

GOALS FOR TODAY

Acceleration practice
Graphing representations
Continue Text LOL

REVIEW FROM YESTERDAY

What is the standard unit for distance/displacement? "Meters (m)

What is the standard unit for speed/velocity?
-Meters per second (m/s)
What is the standard unit for acceleration?
"Meters per second squared ($\mathrm{m} / \mathrm{s}^{2}$)

EXAMPLE \#1

The California Screamin' ride at California Adventure accelerates from 0 to $89 \mathrm{~km} / \mathrm{hr}$ in 4.0 seconds at launch. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?
${ }^{*}$ Ans $=6.2 \mathrm{~m} / \mathrm{s}^{2}$

EXAMPLE \#2

You're driving down the 2
Freeway at $26 \mathrm{~m} / \mathrm{s}$ when you see traffic up ahead, so you brake to $12 \mathrm{~m} / \mathrm{s}$ in 7.0 seconds. What is your acceleration?
"Ans $=-2.0 \mathrm{~m} / \mathrm{s}^{2}$
What does the negative sign mean?

REPRESENTATIONS

We've done numerical \& conceptual problems related to distance/displacement, speed/velocity, and acceleration Let's graph!

POSITION VS. TIME GRAPHS

- Draw a position vs. time graph for a car moving at a constant $5 \mathrm{~m} / \mathrm{s}$.

VELOCITY/SPEED VS. TIME GRAPHS

- What does the velocity vs. time graph look like for a car moving at a constant $5 \mathrm{~m} / \mathrm{s}$?

POSITION VS. TIME GRAPHS

time (t, s) m	$\begin{aligned} & \text { Position (x, } \\ & \mathrm{m} / \mathrm{s} \text {) } \end{aligned}$	A cheetah runs to the right 2 meters in 2 seconds, then stops for one second, then
0	00	seconds, then stops for one second, then
1	1 1	runs 4 meters to the right in one second,
2	22	then abruptly runs back to where it started
3	32	in one second.
4	46	in one second.
5	50	- What would this look like in graph form?
		- What is the slope of the graph between $t=$ 0 and $\dagger=2 s$?

VELOCITY VS. TIME GRAPHS

- What does the velocity vs. time graph look like in this example?
- What is the area under the v vs. t curve?
- Displacement!

POSITION VS. TIME GRAPHS

- What would the velocity vs. time graph look like?
- What is the area under the v vs. \dagger curve?
- Displacement!

VELOCITY VS. TIME GRAPH FOR OUR CHEETAH EXAMPLE

Velocity ($\mathrm{v}, \mathrm{m} / \mathrm{s}$)

Time (t , seconds)

a FEW CONVENTIONS

- We assume left is the negative x-direction
- We assume right is the positive x-direction
- Later - up is the positive y-direction, and down is the negative y-direction

all OUR GRaPHS HAVE BEEN CONSTANT VELOCITY WHAT HAPPENS WHEN VELOCITY IS NOT CONSTANT?

Position (x, meters)
Velocity ($\mathrm{v}, \mathrm{m} / \mathrm{s}$)

Position (x , meters)

Time (t, seconds)

5

TAKE A LOOK AT YOUR LINEAR MOTION GRAPHS WSI

