PLEASE TAKE A FEW MINUTES TO ANSWER THESE QUESTIONS ON THE INDEX CARD. YOU MAY

 USE THE FRONT AND BACK. I WILL COLLECT THEM AT THE END OF CLASS TODAY.
1) WHAT IS ONE FUN THING DID OVER THE SUMMER?

2) FILL IN THE BLANK: "I WONDER (ABOUT) ___."

GOALS FOR TODAY

- Answer the question "What is physics?"
- Go over classroom expectations
- Introduce some basics to physics
- Do your first physics problem!

WHAT IS PHYSICS?

- A branch of science that explores the fundamental principles on which our world is built.
- Physics allows us to make conclusions about and predictions of what we cannot see based on what we can see.

HOW DOES PHYSICS MATTER?

- If you live in this world, physics very likely applies to you!
- You will be able to ask, answer, and effectively explain some (possibly silly) questions like:
- Does Ash Ketchum from Pokemon have super strength?
- How much Force did Yoda use to lift the X-Wing in Empire Strikes Back?
- How do you turn a rocket in space?
- Is light speed travel possible?
- Why does the moon look huge and yellow-ish sometimes?
- ...any many other questions you may wonder about!

BASICALLY, PHYSICS WILL CHANGE HOW YOU SEE THE WORLD!

GET READY BECAUSE YOUR MIND WILL BE BLOWN.

GREAT, SO HERE'S HOW TO GET THE MOST OUT OF THIS CLASS.

- http://robertsonphysics.weebly.com/
- Most of all, ask questions and imagine!

THE MOST FUNDAMENTAL OF FUNDAMENTALS

A REVIEW OF S.I. UNITS, SIGFIGS, AND SCIENTIFIC NOTATION

S.I. UNITS

- Length - meter (m)
- Mass - kilogram (kg)
- Electric current - Ampere (A)
- Temperature - Kelvin (K)
- Time - second (s)
- And more that we'll go over later

METRIC PREFIXES

PREFIX	SYMBOL	EXPONENTIAL
Tera	T	10^{12}
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	μ	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}

DO NOT FORGET TO CONVERT TO S.I.!

Metric mishap caused loss of NASA orbiter

September 30, 1999
Web posted at: 4:21 p.m. EDT (2021 GMT) \quad Orbiter

In this story:
Metric system used by NASA for many years

Error points to nation's conversion lag
RELATED STORIES, SITES \downarrow
NASA's Climate Orbiter was lost September 23, 1999

By Robin Lloyd

CNN Interactive Senior Writer
(CNN) -- NASA lost a $\$ 125$ million Mars orbiter because a Lockheed Martin engineering team used English units of measurement while the agency's team used the more conventional metric system for a key spacecraft operation, according to a review finding released Thursday.

CONVERTING UNITS

- $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=0.001 \mathrm{~km}$
- $100 \mathrm{~km} / \mathrm{hr}=$? m / s
- $100 \frac{\mathrm{~km}}{\mathrm{hr}} * 1000 \frac{\mathrm{~m}}{\mathrm{~km}} * \frac{1 \mathrm{hr}}{3600 \mathrm{sec}}=27.7778=$ approx. $30 \mathrm{~m} / \mathrm{s}$
- Pay attention to the units in the problem and the units asked for in the answer.

SIGNIFICANT FIGURES

- The number of reliably known digits in a number
- Tells you how accurately you know a number
- You can say downtown LA is about 10 miles away vs. it's exactly 12.7 miles away
- Even more accurately, it might be

SICNIFIGMNT FIQURES...

SCIENGEYUDODSP 12.733 miles away?

SIG FIGS

- 10 has one sig fig
- 12.7 has three sig figs
- 12.733 has five sig figs
- 0.0067 has only 2 sig figs
- Zeros are only place holders to show where the decimal is.
- How many sig figs does 80.0 have? Why?
- How many sig figs does 60.7 have? Why?

SIG FIGS IN CALCULATIONS

- Multiplying and Dividing
- The answer should only have as many sig figs as the number with the least number of sig figs used in the calculation.
- Example - find the area of a rectangle with sides 11.3 cm and 6.8 cm
- Your calculator will tell you $76.84 \mathrm{~cm}^{2}$, but there is no way you know the area of that rectangle to $0.01 \mathrm{~cm}^{2}$.
- How many sig figs should your answer have?

SIG FIGS IN CALCULATIONS

- Adding and subtracting
- The answer can contain no more decimal places than the least accurate measurement.
- Example: you tie a 30.6 m rope to the end of a 0.57 -Iong rope. How long are the two ropes together?
- You will get 31.17 m, but round off to 31.2 m

SCIENTIFIC NOTATION AND CALCULATIONS

- Instead of writing $1,540,000 \mathrm{~m}$, write $1.54 \times 10^{6} \mathrm{~m}$
- Side note - how many km is this?
- $1.54 \times 10^{6} \mathrm{~m} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}=1.54 \times 10^{3} \mathrm{~m}$
- Instead of 0.0000448 kg , write $4.48 \times 10^{-5} \mathrm{~kg}$
- Side note - how many g is this?
- $4.48 \times 10^{-5} \mathrm{~kg} x \frac{10^{3} \mathrm{~g}}{\mathrm{~kg}}=4.48 \times 10^{-2} \mathrm{~g}$

DISTANCE VS. DISPLACEMENT YOUR FIRST PHYSICS PROBLEM

What was the total distance of your trip?

$$
=5.1+3.6+3.2=11.9 \mathrm{~km}
$$

DISTANCE VS. DISPLACEMENT

What is the distance between your house and LCHS?

$$
\sqrt{3.6^{2}+1.9^{2}}=4.0706 \mathrm{~km} \rightarrow 4.1 \mathrm{~km}
$$

What is the direction between your house and LCHS?
$\tan ^{-1}(3.6 / 1.9)=62^{\circ}$ East of South
Your displacement is $4.1 \mathrm{~km} 62^{\circ} \mathrm{E}$ of S (or $28^{\circ} \mathrm{S}$ of E)

After you do a physics problem, ask - does my answer make sense?

- Turn to your partner and come up with a one sentence difference between distance and displacement.

SCALAR VS. VECTOR

- Scalars have only magnitude
- Distance is a scalar
- Vectors have both magnitude and direction
- Displacement is a vector

SOME PRACTICE PROBLEMS

Sally runs twice around a 400m track. What is her total distance?
a) 400 m
b) 800 m
c) 600 m
d) None of the above

SOME PRACTICE PROBLEMS

Sally runs twice around a 400m track. What is her total displacement?
a) 0 m
b) 800 m
c) 400 m
d) None of the above

SOME PRACTICE PROBLEMS

Billy skateboards for 6.7 meters, then another 0.5 meter up a ramp, then coasts 2.0 meters backwards.
a) Draw a diagram of Billy's motion.
b) What is his distance traveled?
c) What is his displacement?

SOME PRACTICE PROBLEMS

What is $\left[3.0 \times 10^{-3}\right]\left[2.0 \times 10^{5}\right]$? Make sure to have the correct \# of sig figs.

SOME PRACTICE PROBLEMS

What is 4.50×10^{9} ? Make sure to have the correct \# of sig figs. 6.636×10^{-5}

CURB YOUR INTUITION

CURB YOUR INTUITION

Temperature	Length/height/distance	Mass		Speed	
$60^{\circ} \mathrm{C}$ record high on earth	1 cm Width of microSD	3 g	Peanut M\&M	1.4 m/s	Walking
$45^{\circ} \mathrm{C}$ Heat wave in Dubai	3.5 cm length of 3DS game	100 g	cell phone	$1.8 \mathrm{~m} / \mathrm{s}$	Jogger
$35^{\circ} \mathrm{C} \quad$ Pretty gross out	12 cm CD diameter	500 g	Bottled water	$4.3 \mathrm{~m} / \mathrm{s}$	Biking speed
$30^{\circ} \mathrm{C} \quad$ Beach day	75 cm width of Captain America's shield	1.5 kg	Chromebook	$11 \mathrm{~m} / \mathrm{s}$	School Zone
$25^{\circ} \mathrm{C} \quad$ Room temp	80 cm doorway width	2.8 kg	physics textbook	$36 \mathrm{~m} / \mathrm{s}$	LA driver on freeway
$0^{\circ} \mathrm{C}$ Snow	1m lightsaber blade	4 kg	Cat	$89 \mathrm{~m} / \mathrm{s}$	Nascar speed
$-10^{\circ} \mathrm{C}$ Cold day (Moscow)	229 cm height of Yao MIng	60 kg	Lady	$257 \mathrm{~m} / \mathrm{s}$	Cruising plane
$-40^{\circ} \mathrm{C} \quad$ Spit freezes	$3 \mathrm{~m} \quad 1$ story building	70 kg	Dude	$340 \mathrm{~m} / \mathrm{s}$	speed of sound
$-50^{\circ} \mathrm{C}$ low for Minnesota	5 m length of car	460 kg	Snorlax	3.0×10^{8}	/s speed of light

