MACHINES

Machines are designed to take advantage of the relationship between work, force, and distance.
Simple machine: devices use only the forces directly applied and accomplish their task in a single motion

The

MACHINES

Think about machine in terms of input and output
Still constrained by conservation of energy
At absolute best: $\mathrm{W}_{\text {in }}=\mathrm{W}_{\text {out }}$ $(\mathrm{Fd})_{\text {in }}=\left(\mathrm{F}_{\mathrm{d}}\right)_{\text {out }}$

The input is force applied to pedals

Ratio of output force to input force $M A=F_{\text {out }} / F_{\text {in }}$
Typical automotive jack has mechanical advantage of 30 or more
l.e. Force of $100 \mathrm{~N}(22.5 \mathrm{lb})$ input \rightarrow output force of $3000 \mathrm{~N}(675 \mathrm{lb})-$ enough to lift a corner of the car

LEVER

Lever includes stiff structure (lever) that rotates around a fixed point called a fulcrum

Input force
Lever

LEVERS AND THE HUMAN BODY

Your body contains muscles attached to bones in ways that act as levers.

Here the bicep muscle attached in front of the elbow opposes the muscles in the forearm.

Can you think of other muscle levers in your body?

The 3 Classes of Levers

LEVER MECHANICAL ADVANTAGE (MA)
$M A_{\text {lever }}=L_{\text {in }} / L_{\text {out }}\left(=F_{\text {out }} / F_{\text {in }}\right)$
What force must be applied to the end of a 2.0 m long crowbar in order to lift a 500 N rock if the fulcrum of the bar is 0.5 m from the

$$
\begin{aligned}
& M A=1.5 / 0.5=3 \\
& 3=500 \mathrm{~N} / F_{i n} \\
& F_{i n}=167 \mathrm{~N}
\end{aligned}
$$ rock?

RAMP

You need to get a 100 kg couch into a moving van 1.0 m off the ground

If you lifted it, how much work would you need to do? How much force would you apply?
$\mathrm{W}=\mathrm{mgh}=981 \mathrm{~J}, \mathrm{~F}=\mathrm{mg}=981 \mathrm{~N}$

RAMP

$\mathrm{W}=\mathrm{mgh}=981 \mathrm{~J}, \mathrm{~F}=\mathrm{mg}=981 \mathrm{~N}$
Instead you use a ramp 10 m long and 1 m high How much force would you need to apply?
$\mathrm{F}_{\text {app }}=\mathrm{mg} \sin \theta=(100 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1 / 10)=98.1 \mathrm{~N}$ $M A=981 \mathrm{~N} / 98.1 \mathrm{~N}=10$
(excludes frictional losses)

PULLEYS

Like levers and ramps, pulleys
sacrifice displacement for greater forces: pull greater displacement $=$ apply less forces
MA is shown by how many ropes are supporting the "load"

Mechanical Advantage

$$
\text { Mechanical advantage }=\frac{\text { Output force }}{\text { Input force }}
$$

	A	B	C
Input force	5 N	5 N	5 N
Output force	10 N	15 N	20 N
Mechanical advantage	2	3	4

PULLEYS

Like levers and ramps, pulleys
sacrifice displacement for greater forces: pull greater displacement $=$ apply less forces
MA is shown by how many ropes are supporting the "load"

PULLEYS

The pulley system to the right has an input force of 220 N applied to it. As a result of this input force the mass M is lifted a distance of 25.0 cm .
a. How much work was done on M ?

$$
W_{\text {out }}=F d=(220 \mathrm{~N} \times 6) \times .25 \mathrm{~m}=330 \mathrm{~J}
$$

PULLEYS

a. How much work was done on M ? $W_{\text {out }}=F d=(220 \mathrm{~N} \times 6) \times .25 \mathrm{~m}=330 \mathrm{~J}$
b. Through what distance was the input force applied (how much rope is pulled out)?
$\mathrm{W}_{\text {in }}=\mathrm{W}_{\text {out }}=330 \mathrm{~J}=220 \mathrm{~N} \times \mathrm{d}_{\text {in }}$ $d_{\text {in }}=1.5 \mathrm{~m}$

