POWER

Average power is the rate at which work is done
Or, the rate at which energy is transformed
$P=W / \dagger$
Measured in Watts

$$
1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}
$$

POWER

A 40 W lightbulb transforms 40 J of electrical energy into light and heat energy every second
A Toyota Corolla has a 132 horsepower (hp) engine
$1 \mathrm{hp}=746 \mathrm{~W}$
$132 \mathrm{hp}=98.4 \mathrm{~kW}$

POWER

How long will it take a 1750 W motor to lift a $285-\mathrm{kg}$ piano to a $6^{\text {th }}$ story window 16.0 m above?

$$
P=W / t, t=W / P
$$

W done against gravity $=$ $285 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 16.0 \mathrm{~m}$ $=44688 \mathrm{~J}$
$t=44688 \mathrm{~J} / 1750 \mathrm{~W}=25.6 \mathrm{~s}$

POWER

Cars have to do work to overcome the force of friction, air resistance, climb hills, and accelerate
Write power in terms of net force applied to an object and its average speed v
$P=W / t=F d / t=F v$

POWER

Retarding forces, such as

$$
\begin{aligned}
& \mathrm{Fr}=700 \mathrm{~N}+1400 * 9.8 * \sin 10=3082 \mathrm{~N} * 22.2 \mathrm{~m} / \mathrm{s} \\
& =68430 \mathrm{~W}=6.4 * 10^{\wedge} 4 \mathrm{~W}
\end{aligned}
$$

internal friction and air resistance, are typically 400-1000 N
Calculate the power required
of a $1400-\mathrm{kg}$ car assuming a total retarding force of
$\mathrm{F}_{\mathrm{R}}=700 \mathrm{~N}$ as the car
climbs a 10 degree hill at a steady 800 kph (22.2 $\mathrm{m} / \mathrm{s})$.

