At what point is the potential energy the highest for a pendulum?

A) Potential energy is unrelated to height
B) At the end of its path ($1 \& 5$)
C) At the middle of its path ($2 \& 4$)
D) At the bottom of its path (3)
E) Potential energy is constant

At what point is the potential energy the highest for a pendulum?

A) Potential energy is unrelated to height
B) At the end of its path (1 \& 5)
C) At the middle of its path $(2 \& 4)$
D) At the bottom of its path (3)
E) Potential energy is constant

At what point is the kinetic energy the highest for a pendulum?

A) Kinetic energy is unrelated to height
B) At the end of its path ($1 \& 5$)
C) At the middle of its path ($2 \& 4$)
D) At the bottom of its path (3)
E) Kinetic energy is constant

At what point is the kinetic energy the highest for a pendulum?

A) Kinetic energy is unrelated to height B) At the end of its path ($1 \& 5$)
C) At the middle of its path ($2 \& 4$)
D) At the bottom of its path (3)
E) Kinetic energy is constant

At what point is the potential energy the highest for an elliptical orbit?
A) Potential energy is unrelated to satellite motion
B) At the closest point of its path (Penthelion)
C) At the middle of its path
D) At the farthest point of its path (Aphelion)
E) Potential energy is constant

At what point is the potential energy the highest for an elliptical orbit?
A) Potential energy is unrelated to satellite motion
B) At the closest point of its path (Penthelion)
C) At the middle of its path
D) At the farthest point of its path (Aphelion)
E) Potential energy is constant

At what point is the kinetic energy the
highest for an elliptical orbit?

A) Kinetic energy is unrelated to orbits
B) At the closest point of its path (Penthelion)
C) At the middle of its path
D) At the farthest point of its path (Aphelion)
E) Kinetic energy is constant

At what point is the kinetic energy the highest for an elliptical orbit?

A) Kinetic energy is unrelated to orbits
B) At the closest point of its path (Penthelion)
C) At the middle of its path
D) At the farthest point of its path (Aphelion)
E) Kinetic energy is constant

CONSERVATIVE VS. NONCONSERVATIVE FORCES

Work done against gravity does not depend on the path taken
Forces for which work done doesn't depend on path but only on initial and final positions are called conservative forces
l.e. gravitational, elastic (spring), electric

CONSERVATIVE VS. NONCONSERVATIVE FORCES

Nonconservative forces do depend on the path
l.e. friction, air resistance, tension, push or pull Add or remove energy from the system

FRICTION

50 N of friction act on a box that is dragged across the floor from A to B . How much work is done by friction along the three paths shown to the right?

1: $(.5 \times \pi \times 5 \mathrm{~m}) \times-50 \mathrm{~N}=-393 \mathrm{~J}$
2: $(5 \sqrt{5 m}) x-50 \mathrm{~N}=-354 \mathrm{~J}$
3: $10 \mathrm{~m} \times-50 \mathrm{~N}=-500 \mathrm{~J}$

CONSERVATIVE FORCES AND PE

Potential energy is the energy associated with position or configuration
Only makes sense if it can be stated uniquely for a given point
Can't be done with nonconservative forces Potential energy can be defined only for a conservative force

WORK-ENERGY THEOREM REVIIITED
$\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{NC}}$
$W_{\text {net }}=\Delta K E$
$W_{C}=-\Delta \mathrm{PE}$
$\mathrm{W}_{\mathrm{NC}}=\Delta \mathrm{KE}+\Delta \mathrm{PE}$
Note: make sure to include every force acting on a system

CONSERVATION OF MECHANICAL ENERGY

What if there are no nonconservative forces acting on the system?

- $\triangle K E+\triangle P E=0$
- $\left(\mathrm{KE}_{2}-K \mathrm{E}_{1}\right)+\left(\mathrm{PE}_{2}-P E_{1}\right)=0$
$\cdot \mathrm{KE}_{2}+P E_{2}=K E_{1}+P E_{1}$
Total mechanical energy, E
- $E=K E+P E$
${ }^{-} E_{2}=E_{1}=$ constant

CONSERVATION OF MECHANICAL ENERGY

If only conservative forces are acting, the total mechanical energy of a system never changes. It stays constant: it is conserved
Conservative forces keep energy conserved: nonconservative forces add or remove energy from a system.

MOVEMENT OF ENERGY

Energy cannot be created or destroyed, just shuffled around

ENERGY SKATE PARK

TURN TO YOUR NEIGHBOR/GROUP OF 3 AND EXPLAIN THE DIFFERENCES BETWEEN CONSERVATIVE AND NONCONSERVATIVE FORCES, USING EXAMPLES

ROLLER COASTER PHYSICS

A rollercoaster car flies along at $25 \mathrm{~m} / \mathrm{s}$ before dropping down a 35 m hill.
What will be the speed of the car at the bottom of the hill?
$1 / 2 m v_{1}{ }^{2}+m g h_{1}=$
$1 / 2 m v_{2}{ }^{2}+m g h_{2}$
$m g h_{2}=0, m$'s cancel out!

$.5(25 \mathrm{~m} / \mathrm{s})^{\wedge} 2+9.8 \times 35=1 / 2 \mathrm{mv}_{2}{ }^{2}$
$v_{2}=36 \mathrm{~m} / \mathrm{s}$

ROLLER COASTER PHYSICS

$v_{2}=36 \mathrm{~m} / \mathrm{s}$
What is the maximum height of the second hill the car could make it up without assistance?
$1 / 2 m v_{2}{ }^{2}+m g h_{2}=$
$1 / 2 m v_{\text {max }}{ }^{2}+m g h_{\text {max }}$
$1 / 2 m v_{\text {max }}^{2}=0, m g h_{2}=0$
$1 / 2 m v_{2}{ }^{2}=m g h_{\text {max }}$
$\left(.5(36 \mathrm{~m} / \mathrm{s})^{\wedge} 2\right) / 9.8=h_{\text {max }}$ $h_{\text {max }}=66 \mathrm{~m}$

POTENTIAL ENERGY \rightarrow WORK

You want to hammer in a nail on a bookcase, but you don't have a hammer! You decide to drop your physics textbook onto the nail instead. If you drop your 5 kg textbook from 2 m high, ideally how much work does the textbook do on the nail?
$-\mathrm{PE}_{\mathrm{g}}=\mathrm{W}_{\mathrm{g}}=\mathrm{mgh}=5 \mathrm{~kg} \times 9.8 \times 2 \mathrm{~m}=98 \mathrm{~J}$
Ideally all of the potential energy is transferred to doing work.

