Dynamics

UNDERSTANDING THE FORCES THAT CAUSE MOTION

Force is the push or pull on an object

Examples of forces:
oLifting your backpack full of books - Holding a magnet to a fridge
-Gravity

- Friction

Force is a vector

Measured in Newtons (N) = kg m/s²

Aristotle believed that for objects to maintain motion, there had to be a constant force acting on them.

Galileo gave a new view of forces
What forces are acting on a book when you push it across the table at a constant speed?

Isaac Newton got excited about Galileo's conclusions and wrote a book about it
-Principia (1687)

What happens when there is net force?
A force on an object at rest will cause it to move
A force with the motion of a moving object will cause it to speed up
A force against the motion of a moving object will cause it to slow down
A force perpendicular to an object's motion will cause it to change direction
Therefore...

Better definition of force:
Force is an action capable of causing an object to accelerate
$\Sigma F=m a$

Acceleration

A constant acceleration means that the object's velocity is changing at a constant rate

-Example: if the acceleration is along the direction of motion, the speed grows by the same amount in each time interval (e.g., second)
if the speed changes by 1 meter per second each second, the acceleration is (1 meter per second) per second, or $1 \mathrm{~m} / \mathrm{s}^{2}$.
if $v=15 \mathrm{~m} / \mathrm{s}$ at time $t=0$, and $a=1 \mathrm{~m} / \mathrm{s}^{2}$, then, $v=16 \mathrm{~m} / \mathrm{s}$ at $t=1 \mathrm{sec}, v=17 \mathrm{~m} / \mathrm{s}$ at $t=2$ $\mathrm{sec}, v=20 \mathrm{~m} / \mathrm{s}$ at $t=5 \mathrm{sec}$, etc.
-If the acceleration is against the direction of motion, the speed decreases by the same amount in each time interval.
if $v=15 \mathrm{~m} / \mathrm{s}$ at time 0 , and $\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}$ against the motion, then $\mathrm{v}=14 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=1 \mathrm{~s}, \mathrm{v}=13$ m / s at $\mathrm{t}=2 \mathrm{~s}$, etc.

What is the force of gravity $\left(F_{G}\right)$ on a person of mass 60 kg ?
$F_{G}=m a=60 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=588 \mathrm{~N}$
This is their weight

The moon's acceleration due to gravity is 1/6 that of Earth's.
-How much more do you weigh on Earth than you do on the moon?
-How much does your mass change?
$\Sigma F=m a$

Newton's $2^{\text {nd }}$ Law
The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to an object's mass
$a=\frac{\Sigma F}{m}$
This is called proportional reasoning

Mass is the measure of how much matter is in an object.

- It is measured in kilograms (kg)

Newton's $1^{\text {st }}$ Law $=$ Law of Inertia

Inertia is an object's tendency to resist change -A measure of an object's "laziness"
-The more mass an object has, the more inertia it has - What makes the giant boulder following Indiana at $5 \mathrm{~m} / \mathrm{s}$ have more inertia than a marble rolling on the ground at $5 \mathrm{~m} / \mathrm{s}$?

Weight vs. Mass vs. Volume
Not the same!
Mass measures inertia
Weight measures force of gravity $\left(F_{G}\right)$ on that mass

- Your weight on the moon < weight on Earth

Volume measures the amount of space an object occupies
${ }^{\circ} \mathrm{A} 1500 \mathrm{~kg}$ junk car is crushed to $1 / 2$ its original volume. What is its mass?

Newton's $1^{\text {st }}$ Law:
I. An object continues in its state of rest or uniform speed in a straight line unless acted on by an external, unbalanced force

Balanced Force

Equal forces in opposite directions produce no motion

Equilibrium

When there is a balanced force:
-This object is in mechanical equilibrium
$\circ \Sigma F=0$
-Acceleration =0
olf the velocity $=0$, it is in static equilibrium
olf the velocity = constant, it is in dynamic equilibrium

Constant Velocity Motion - No NET Forces

If objects in motion tend to stay in motion, why don't moving objects keep moving forever?
Things don't keep moving forever because there's almost always an unbalanced force acting upon them.

A book sliding across a table slows down and stops because of the force of friction.

If you throw a ball upwards it will eventually slow down and fall because of the force of gravity.

Unbalanced Forces

Unequal opposing forces

 produce an unbalanced force causing motion

Unbalanced forces

- While the object experiences a constant net force, it will have a constant acceleration ($\mathrm{F}=\mathrm{ma}$)
-What happens to the object once the force is released? (assuming no other forces act on it) ${ }^{\circ}$ Moves at a constant speed

Real-life examples of Newton's 1st Law

Coins on elbow - Objects at rest stay at rest Fixing a hammer - Objects in motion stay in motion
Tablecloth and Dishware - Objects at rest stay at rest

Coins in a cup - Objects at rest stay at rest

Reference Frames

Newton's Laws are true only for inertial reference frames If the frame of reference is accelerating, it is a non-inertial reference frame and Newton's Laws no longer apply

Plane-based reference system

If you observe a falling object has an acceleration less than g...

- This object isn't in free fall
- There is a force other than gravity
- The force of air resistance (drag force: F_{D}) depends on an object's size and speed

Terminal Velocity Revisited
${ }^{\circ}$ Reached when $F_{\text {drag }}=F_{G}=\mathrm{mg}$

- For a 75 kg person with a surface area of $0.5 \mathrm{~m}^{2}$, $v_{\text {term }}=50 \mathrm{~m} / \mathrm{s}$ or about 110 mph
olt takes this person about 5 seconds, 125 m of fall -(Actually takes slightly longer because acceleration is reduced from $9.81 \mathrm{~m} / \mathrm{s}^{2}$ during the fall as you begin to encounter drag)

Summary

Mass is a property of objects, producing a reluctance to accelerate, called inertia
Velocity refers to both speed and direction
Acceleration means a change in velocity (either magnitude, or direction or both)
If an object is accelerating, it is being acted upon by a net force, and $\boldsymbol{F}=\boldsymbol{m a}$. No exceptions.

