For the fastest ride on a merry-go-round, you should ride on the:
A. Inside
B. Middle
C. Outside

D. You'll go the same speed everywhere

Circular

Motion

pc: Ken Christison

Rotation: motion or spin

on an internal axis

Revolution: motion or spin

 on an external axis

- Consider a particle moving at constant speed in a circle.
- I.e. a satellite in orbit, a ball at the end of a string, an object on the side of a rotating wheel.
- This particle is in uniform circular motion: v is the same magnitude and always tangent to the edge of the circle, so direction is always changing
- Radial - behavior toward and away from the center of the circle
- Angular/rotational - behavior measured in reference to the axis of revolution/rotation.
- Tangential - behavior along the edge of the circle
- v is the tangential velocity $\left(v_{t}\right)$
- May also see "linear"

How do we figure out tangential speed (v)?
Method 1:

- Time to go once around the circle is called period (T).
- $v=$ distance traveled / time
- $v=2 \pi r / T$
- 1 circumference /1 period

How do we figure out tangential speed (v)?

Method 2:

- Rotational or angular speed
- Frequency (f): \# revolutions/rotations per second
- In your car, this is measured as rpm (rotations per minute)
- Standard units: Hertz (Hz), $1 \mathrm{~Hz}=1$ rev/s
- $f=1 / T$
- $v=2 \pi r f$

All parts of a rigid merry-goround rotate about their axes in the same amount of time, so they have the same rotational speed

A helicopter blade takes 0.154 seconds for one rotation (cycle). For point 2 on the blade, find the rotational/angular speed

Given: $\mathrm{t}=0.154 \mathrm{~s} \& 1$ rotation (cycle)
Find the average rotational speed (in rps)
$f=$ rotations

$=1$ rotation
0.154 seconds
$=6.49 \mathrm{rps}=6.49 \mathrm{cycles} /$ second $=6.49 \mathrm{~Hz}$
Would this be different at point 1 ? Why or why not?
No! All the points on the blade are spinning together. They all cover 1 rotation in 0.154 seconds. Angular/rotational speed isn't dependent on the radius

Now that you know the frequency is 6.5 Hz and the period is 0.154 seconds, calculate the tangential velocity at points 1 and 2 with your neighbors. Which is moving faster?
$v=2 \pi r f=2 \pi r / T$
2: $273 \mathrm{~m} / \mathrm{s}$ vs. $122 \mathrm{~m} / \mathrm{s}$

Explain to your neighbor why Darth Vader has the fastest tangential speed at the outer edge of the merry-go-round, but his angular
 speed is the same no matter where he sits.

A spinning object's velocity is constantly changing direction. So it must be accelerating. How do we find that acceleration?

$$
a_{c}=\frac{v_{T}^{2}}{r}
$$

We call this acceleration "centripetal" meaning "center-seeking".

Point 2 on the helicopter blade has a tangential speed of 273 m / s. Find the centripetal acceleration at this point.

$$
a_{c}=\frac{v_{T}^{2}}{r}=\frac{(273 \mathrm{~m} / \mathrm{s})^{2}}{6.70 \mathrm{~m}}=1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

