Circular

Motion

pc: Ken Christison

- Consider a particle moving at constant speed in a circle.
- I.e. a satellite in orbit, a ball at the end of a string, an object on the side of a rotating wheel.
- This particle is in uniform circular motion: v is the same magnitude and always tangent to the edge of the circle, so direction is always changing

How do you make an object turn?

- So we need an unbalanced force. Where would be the most effective place to apply it?

Rotation: motion or spin

on an internal axis

Revolution: motion or spin

 on an external axis

- Radial - behavior toward and away from the center of the circle
- Angular/rotational - behavior measured in reference to the axis of revolution/rotation.
- Tangential - behavior along the edge of the circle
- v is the tangential velocity $\left(v_{t}\right)$
- May also see "linear"

Which way should the force be applied to make the object move in a circle?

- Forces that point toward the center of rotation are called centripetal forces, meaning "center-seeking" forces
- Keep an object in rotation

Centripetal forces aren't new forces, they're the same ones we've talked about before:

- Ball swung on a string-
- Car making a turn-
- Moon orbiting the Earth-
- Rollercoaster car going around a loop-

What's needed to determine the magnitude of the necessary centripetal force:

- Mass of object (m)
- How big is the circular path (r)
- How fast the object is moving around the circle (tangential velocity, v)

How to find the tangential velocity v:

- Frequency (f) = \# revolutions/second
- Measured in Hertz (Hz)
- $1 \mathrm{~Hz}=1 \mathrm{rev} / \mathrm{sec}=1 \mathrm{~s}^{-1}$
- Period (T) = time to make 1 full revolution
- Measured in seconds
- $T=1 / f$

Swinging a cup from a string of length r and, using a stopwatch, measure a period of T

- How fast are you swinging the cup?
- $v=$ distance/time
- $v=\frac{2 \pi r}{T}$

Centripetal Force

$\Sigma \mathrm{F}_{\mathrm{c}}=\mathrm{ma}_{\mathrm{c}}$
 $$
a_{c}=v^{2} / r
$$

You can swing the 18.0 kg ball from its 1.50 m long chain through 2.00 revolutions per second. What is the force of tension in the chain? 4,260 N

The moon's nearly circular orbit about the Earth has a radius of about 384,000 km and a period T of 27.3 days. Determine the acceleration of the Moon towards the Earth.
$2.72 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$

