2D (OR 3D) ELASTIC COLLISIONS

- Vector nature of momentum is important
- Each component of the momentum is conserved
- $\mathrm{P}_{1 \mathrm{x}}{ }^{+} \mathrm{P}_{2 \mathrm{x}}=\mathrm{P}_{1 \mathrm{x}}{ }^{\prime}+\mathrm{P}_{2 \mathrm{x}}{ }^{\prime}$
- $m_{1} v_{1}=m_{1} v_{1}{ }^{\prime} \cos \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \cos \theta_{2}{ }^{\prime}$
- $\mathrm{P}_{1 y}+\mathrm{P}_{2 y}=\mathrm{P}_{1 y}{ }^{\prime}+\mathrm{P}_{2 y}{ }^{\prime}$
- $0=m_{1} v^{\prime}{ }^{\prime} \sin \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \sin \theta_{2}{ }^{\prime}$

2D OR 3D COLLISIONS

- A billiard ball moving with speed $v_{1}=3.0 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction strikes an equal-mass ball initially at rest
- The balls move off at 45 degrees: m_{2} above and m_{1} below. What are the speeds of the two balls after the collision?
- Both $2.1 \mathrm{~m} / \mathrm{s}$

- An eagle $\left(m_{1}=4.3 \mathrm{~kg}\right)$ moving with speed $v_{1}=7.8 \mathrm{~m} / \mathrm{s}$ is on a collision course with a second eagle ($m_{2}=5.6$ kg) moving at $\mathrm{v}_{2}=10.2 \mathrm{~m} / \mathrm{s}$ in a direction at right angles to each other. After they collide they hold onto each other.
- In what direction and with what speed are they moving after the collision?
- $v^{\prime}=6.7 \mathrm{~m} / \mathrm{s}$ at 60 degrees
- Why do high jumpers jump backwards and arch their backs to get over the bar?
- How do high jumpers use the concept of the center of mass to jump higher with the same amount of force?

- In real life, objects aren't just points - Real, extended bodies can undergo rotation, vibration, etc. in addition to translational motion
- The diver experiences parabolic translational motion and rotational motion
- Motion that is not pure translational = general motion

CENTER OF MASS

- Center of mass (CM) is the point where:
- All mass is considered "concentrated"
- Net force can be applied without causing object to rotate
- Object can be balanced

Figure 4

(a)
(a)

F on CM
F right of CM
F left of CM

F on CM

CENTER OF MASS: 2D MOTION

Apply a force away from the center of mass, object will rotate around its center of mass

CENTER OF MASS (CM)

CM doesn't need to be inside the object in question!
CM is often found experimentally or mathematically

CENTER OF MASS (CM)

Any extended body is made up of many tiny particles
For a 2-particle system, the position of the center of mass $\left(\mathrm{X}_{\mathrm{CM}}\right)$ is:

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Which of the 2 masses is x_{CM} closer to? Why?
Where would you find $x_{C M}$ if the masses were equal?

CENTER OF MASS (CM)

Let's add a $3^{\text {rd }}$ mass.

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}
$$

We could do this forever!

$$
x_{c m}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
$$

CENTER OF MASS (CM): PLUTO AND CHARON

CALCULATING CM

The masses of the Earth and Moon are $5.98 \times 10^{24} \mathrm{~kg}$ and 7.35×10^{22} kg , respectively, and their centers are separated by $3.84 \times 10^{8} \mathrm{~m}$ Where is their center of mass?
$4.66 \times 10^{6} \mathrm{~m}$ from the center of the Earth

$$
x_{c m}=\frac{x_{E} m_{E}+x_{M} m_{M}}{m_{E}+m_{M}}
$$ which is about $6.4 \times 10^{6} \mathrm{~m}$

For objects in 2 or 3 dimensions, you would need to find the center of mass in the x, y, and z directions

$$
\begin{gathered}
y_{\text {com }}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}} \\
z_{\text {com }}=\frac{\sum_{i=1}^{n} m_{i} z_{i}}{\sum_{i=1}^{n} m_{i}}
\end{gathered}
$$

Same calculations apply to finding the velocity/acceleration of a system's center of mass

$$
\begin{aligned}
& v_{c m}=\frac{\sum_{i=1}^{n} m_{i} v_{i}}{\sum_{i=1}^{n} m_{i}} \\
& a_{c m}=\frac{\sum_{i=1}^{n} m_{i} a_{i}}{\sum_{i=1}^{n} m_{i}}
\end{aligned}
$$

$$
x(\text { or } y)_{c m}=\frac{\sum_{i=1}^{n} m_{i} x(\text { or } y)_{i}}{\sum_{i=1}^{n} m_{i}}
$$

$$
\begin{aligned}
& v_{c m}=\frac{\sum_{i=1}^{n} m_{i} v_{i}}{\sum_{i=1}^{n} m_{i}} \\
& a_{c m}=\frac{\sum_{i=1}^{n} m_{i} a_{i}}{\sum_{i=1}^{n} m_{i}}
\end{aligned}
$$

CENTER OF GRAVITY (CG)

Center of Gravity (CG) is the point at which the force of gravity can be considered to act
Usually the same point as CM
When would CM not be the same as CG?
If an object is so large that the gravitational field around it isn't uniform...

- https://phet.colorado.edu/sims/html /balancing-act/latest/balancingact_en.html

- Go to the Game section, and start from level 4 :

$$
\text { - } x_{c m}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
$$

2D (OR 3D) ELASTIC COLLISIONS

- Vector nature of momentum is important
- Each component of the momentum is conserved
- $\mathrm{P}_{1 \mathrm{x}}+\mathrm{P}_{2 \mathrm{x}}=\mathrm{P}_{1 \mathrm{x}}{ }^{\prime}+\mathrm{P}_{2 \mathrm{x}}{ }^{\prime}$
- $m_{1} v_{1}=m_{1} v_{1}{ }^{\prime} \cos \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \cos \theta_{2}{ }^{\prime}$
- $\mathrm{P}_{1 y}+\mathrm{P}_{2 y}=\mathrm{P}_{1 y}{ }^{\prime}+\mathrm{P}_{2 y}$,
- $0=m_{1} v^{\prime}{ }^{\prime} \sin \theta_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime} \sin \theta_{2}{ }^{\prime}$

2D OR 3D COLLISIONS

- A billiard ball moving with speed $v_{1}=3.0 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction strikes an equal-mass ball initially at rest
- The balls move off at 45 degrees: m_{2} above and m_{1} below. What are the speeds of the two balls after the collision?
- Both $2.1 \mathrm{~m} / \mathrm{s}$
- What is the change in kinetic energy?

- An eagle $\left(m_{1}=4.3 \mathrm{~kg}\right)$ moving with speed $v_{1}=7.8 \mathrm{~m} / \mathrm{s}$ is on a collision course with a second eagle ($m_{2}=5.6$ kg) moving at $\mathrm{v}_{2}=10.2 \mathrm{~m} / \mathrm{s}$ in a direction at right angles to each other. After they collide they hold onto each other.
- In what direction and with what speed are they moving after the collision?
- $v^{\prime}=6.7 \mathrm{~m} / \mathrm{s}$ at 60 degrees

- What is the net work done by nonconservative forces on the system as a result of the collision?
- $W=\Delta K E$
- -200 J

SUSPEND YOUR DISBELIEF A MOMENT- A 175 G FRISBEE MOVING HORIZONTALLY AT 14 M/S EXPLODES IN MIDAIR.A 50. G PIECE CONTINUES IN THE SAME HORIZONTAL DIRECTION AT 20. M/S.A 25 G PIECE DROPS VERTICALLY AT $30 \mathrm{M} / \mathrm{S}$. WHAT MUST BE THE VELOCITY AND DIRECTION (ANGLE) OF THE FINAL IOO. G PIECE?

$16.3 \mathrm{~m} / \mathrm{s}$
27 degrees above horizontal

INITIALLY, THE FRISBEE'S CM IS MOVING AT I4 M/S. HOW FAST IS THE CM MOVING AFTER THE EXPLOSION?

